Scenario #1 How many grams of silver chloride (AgCl) are produced from the reaction between 100.0 g of silver nitrate (AgNO3) and 100.0 g barium chloride (BaCl₂) ?? 2AgNO3(s) + BaCl2 (s) moles mass liters 100.0 g 100.0 g What is the limiting reactant? AgNO3 Ba(NO3)2 (3) 1 moles BaCl2 208.23 g BaCl2 + Determine the number of moles of product that can be created from 100 g of AgNO: 100.0 g AgNO3 x 1 mole AgNO3 169.87 moles AgNO3 x 2AgCl (s) 0.5887 moles 2 moles AgCl 2 moles AgNO3 Determine the number of moles of product that can be created from 100 g of BaCl₂: 2 moles AgCl 100 g BaCl2 x X Imple Bac12 0.5887 moles AgCI X 143.2 g AgCl 1 mole AgCl 0.58868 moles =200/339.74= 0.5887 moles AgCl MOLAR MASSES IF NEEDED: 169.87 g/mol AgNO, AgCl 143.32 g/mol 213.341 g/mol Ba(NO₂)₂ Back, 208.23 g/mol What is the maximum amount of AgCl that can be formed? 200.0/208.23= 84.37 g AgCl 0.960476 moles AgCl 0.9605 moles AgCl 0.5887 moles AgCl
Scenario #1 How many grams of silver chloride (AgCl) are produced from the reaction between 100.0 g of silver nitrate (AgNO3) and 100.0 g barium chloride (BaCl₂) ?? 2AgNO3(s) + BaCl2 (s) moles mass liters 100.0 g 100.0 g What is the limiting reactant? AgNO3 Ba(NO3)2 (3) 1 moles BaCl2 208.23 g BaCl2 + Determine the number of moles of product that can be created from 100 g of AgNO: 100.0 g AgNO3 x 1 mole AgNO3 169.87 moles AgNO3 x 2AgCl (s) 0.5887 moles 2 moles AgCl 2 moles AgNO3 Determine the number of moles of product that can be created from 100 g of BaCl₂: 2 moles AgCl 100 g BaCl2 x X Imple Bac12 0.5887 moles AgCI X 143.2 g AgCl 1 mole AgCl 0.58868 moles =200/339.74= 0.5887 moles AgCl MOLAR MASSES IF NEEDED: 169.87 g/mol AgNO, AgCl 143.32 g/mol 213.341 g/mol Ba(NO₂)₂ Back, 208.23 g/mol What is the maximum amount of AgCl that can be formed? 200.0/208.23= 84.37 g AgCl 0.960476 moles AgCl 0.9605 moles AgCl 0.5887 moles AgCl
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question

Transcribed Image Text:IN +3H, ANH,
7
MILE
In both scenarios depicted graphically,
above, the more abundant reactant is
the limiting reactant.
Cite evidence and reasoning to
explain how this is possible.
Clas
|-|
ỊCH, K2010-20
333333
DS
AAAA
CL
IS
0
225
The more abundant reactant is the limiting reactant because it doesn't
have enough to fulfill the "recipe." In the first scenario, there needs to be
1N2 and 3H2 to make 2NH3. So even though there are 7 H2, only 6 of
those 7 can be made into 2 2NH3, even though the 1 N2 is already enough
to make an NH3 product. This makes H2 the limiting factor even though
it's the most abundant. In the second scenario, there has to be 1 CH4 and
202 to make the products. With that "recipe," 4 CH4 would need 8 02,
but since there are only 6 02, the amount of product that can be made is
limited even though 02 is technically the most abundant reactant.

Transcribed Image Text:Scenario #1
How many grams of silver chloride (AgCl) are produced from the reaction between
100.0 g of silver nitrate (AgNO,) and 100.0 g barium chloride (BaCl₂) ??
2AgNO3(s) + BaCl₂ (s)
moles
liters
100.0 g
100 g BaCl2 x
100.0 g
Determine the number of moles of product that can be created from 100 g of AgNO₂:
100.0 g-AgNO3 x
1 mole AgNO3
169.87 moles AgNO3
What is the
limiting reactant?
AgNO3
Ba(NO3)2 (5) + 2AgCl (s)
0.5887 moles
1 moles BaCl2
Determine the number of moles of product that can be created from 100 g of BaCl,:
2 moles AgC!
X
1mol Bach
208.23 g BaCl2
X
2 moles AgCl
2 moles AgNO3
0.5887 moles AgCl X 143.2 g AgCl
1 mole AgCl
MOLAR MASSES IF NEEDED:
169.87 g/mol
143,32 g/mol
213.341 g/mol
208.23 g/mol
0.58868 moles
- 200/333.74= 0.5887 moles AgCl
What is the maximum amount of
AgCl that can be formed?
AgNO.
AgCl
Ba(NO₂)₂
200.0/208.23 =
84.37 g AgCl
0.960476 moles AgCl
0.9606 molos
AgCl
0.5887 moles AgCl
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY