Rewrite the expression cos (0) without using any powers of sin or cos.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Rewrite the expression \( \cos^4(\theta) \) without using any powers of sine or cosine.

**Explanation:**

The goal is to express \( \cos^4(\theta) \) using trigonometric identities that do not include powers of the sine or cosine functions directly. This typically involves using identities such as the double angle formulas or the Pythagorean identity. Here's a step-by-step approach:

1. **Start with the Pythagorean identity:**
   \[
   \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}
   \]

2. **Square both sides to find \( \cos^4(\theta) \):**
   \[
   \cos^4(\theta) = \left(\frac{1 + \cos(2\theta)}{2}\right)^2
   \]

3. **Expand the square:**
   \[
   \cos^4(\theta) = \frac{(1 + \cos(2\theta))^2}{4}
   \]

4. **Expand the numerator using the formula for squaring a binomial:**
   \[
   (1 + \cos(2\theta))^2 = 1 + 2\cos(2\theta) + \cos^2(2\theta)
   \]

5. **Recall the identity for \( \cos^2(2\theta) \):**
   \[
   \cos^2(2\theta) = \frac{1 + \cos(4\theta)}{2}
   \]

6. **Substitute back:**
   \[
   \cos^4(\theta) = \frac{1 + 2\cos(2\theta) + \frac{1 + \cos(4\theta)}{2}}{4}
   \]

7. **Simplify the expression:**
   \[
   \cos^4(\theta) = \frac{2 + 2\cos(2\theta) + 1 + \cos(4\theta)}{8}
   \]

8. **Simplify further:**
   \[
   \cos^4(\theta) = \frac{3 + 2\cos(2\theta) + \cos(4\theta)}{8}
   \]

Thus, the expression
Transcribed Image Text:**Problem Statement:** Rewrite the expression \( \cos^4(\theta) \) without using any powers of sine or cosine. **Explanation:** The goal is to express \( \cos^4(\theta) \) using trigonometric identities that do not include powers of the sine or cosine functions directly. This typically involves using identities such as the double angle formulas or the Pythagorean identity. Here's a step-by-step approach: 1. **Start with the Pythagorean identity:** \[ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \] 2. **Square both sides to find \( \cos^4(\theta) \):** \[ \cos^4(\theta) = \left(\frac{1 + \cos(2\theta)}{2}\right)^2 \] 3. **Expand the square:** \[ \cos^4(\theta) = \frac{(1 + \cos(2\theta))^2}{4} \] 4. **Expand the numerator using the formula for squaring a binomial:** \[ (1 + \cos(2\theta))^2 = 1 + 2\cos(2\theta) + \cos^2(2\theta) \] 5. **Recall the identity for \( \cos^2(2\theta) \):** \[ \cos^2(2\theta) = \frac{1 + \cos(4\theta)}{2} \] 6. **Substitute back:** \[ \cos^4(\theta) = \frac{1 + 2\cos(2\theta) + \frac{1 + \cos(4\theta)}{2}}{4} \] 7. **Simplify the expression:** \[ \cos^4(\theta) = \frac{2 + 2\cos(2\theta) + 1 + \cos(4\theta)}{8} \] 8. **Simplify further:** \[ \cos^4(\theta) = \frac{3 + 2\cos(2\theta) + \cos(4\theta)}{8} \] Thus, the expression
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning