Evaluate the expression cos sin 6 16 + tan 3 . Give an exact answer.

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
Question
100%
**Title: Evaluating Trigonometric Expressions Involving Inverse Functions**

**Instruction: Evaluate the expression \( \cos \left( \sin^{-1} \left( \frac{6}{16} \right) + \tan^{-1} \left( \frac{3}{7} \right) \right) \). Give an exact answer.**

To solve this problem, follow these steps:

1. Start by defining the angles for the inverse sine and inverse tangent functions.
   - Let \( \theta = \sin^{-1} \left( \frac{6}{16} \right) \).
   - Let \( \phi = \tan^{-1} \left( \frac{3}{7} \right) \).

2. Evaluate the trigonometric expressions:
   - \( \sin \theta = \frac{6}{16} = \frac{3}{8} \).
   - Since \( \theta \) is an angle in a right triangle with opposite side 3 and hypotenuse 8, the adjacent side \( a \) can be found using the Pythagorean theorem:
     \[
     a = \sqrt{8^2 - 3^2} = \sqrt{64 - 9} = \sqrt{55}.
     \]
     Thus,
     \[
     \cos \theta = \frac{\sqrt{55}}{8}.
     \]

3. For \( \phi \):
   - \( \tan \phi = \frac{3}{7} \).
   - This represents a right triangle where the opposite side is 3 and the adjacent side is 7. The hypotenuse \( h \) is:
     \[
     h = \sqrt{7^2 + 3^2} = \sqrt{49 + 9} = \sqrt{58}.
     \]
     Thus,
     \[
     \cos \phi = \frac{7}{\sqrt{58}}.
     \]

4. Combine the two angles:
   - Use the cosine angle addition formula:
     \[
     \cos (\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi.
     \]
   - Plug in the known values:
     \[
     \cos (\theta + \phi) = \left( \frac{\sqrt{55}}{8} \right)
Transcribed Image Text:**Title: Evaluating Trigonometric Expressions Involving Inverse Functions** **Instruction: Evaluate the expression \( \cos \left( \sin^{-1} \left( \frac{6}{16} \right) + \tan^{-1} \left( \frac{3}{7} \right) \right) \). Give an exact answer.** To solve this problem, follow these steps: 1. Start by defining the angles for the inverse sine and inverse tangent functions. - Let \( \theta = \sin^{-1} \left( \frac{6}{16} \right) \). - Let \( \phi = \tan^{-1} \left( \frac{3}{7} \right) \). 2. Evaluate the trigonometric expressions: - \( \sin \theta = \frac{6}{16} = \frac{3}{8} \). - Since \( \theta \) is an angle in a right triangle with opposite side 3 and hypotenuse 8, the adjacent side \( a \) can be found using the Pythagorean theorem: \[ a = \sqrt{8^2 - 3^2} = \sqrt{64 - 9} = \sqrt{55}. \] Thus, \[ \cos \theta = \frac{\sqrt{55}}{8}. \] 3. For \( \phi \): - \( \tan \phi = \frac{3}{7} \). - This represents a right triangle where the opposite side is 3 and the adjacent side is 7. The hypotenuse \( h \) is: \[ h = \sqrt{7^2 + 3^2} = \sqrt{49 + 9} = \sqrt{58}. \] Thus, \[ \cos \phi = \frac{7}{\sqrt{58}}. \] 4. Combine the two angles: - Use the cosine angle addition formula: \[ \cos (\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi. \] - Plug in the known values: \[ \cos (\theta + \phi) = \left( \frac{\sqrt{55}}{8} \right)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning