Refrigerant 134a enters a compressor of a vapour compression of a refrigeration cycle at 120Kpa as a saturated vapour and leaves at 900 Kpa and 75oc. The refrigerant leaves the condenser as a saturated liquid. The rate of cooling provided by the system is 18000 Btu/hr. Determine (1) Mass flow rate of R134a (2) The Cop of the cycle (3) Also determine the Cop of the cycle if the expansion valve is replaced by an isentropic turbine. Do you recommend such a replacement for the refrigeration system? (4) Determine the Cop if the evaporator pressure is 160Kpa and otheer values remains the same. (5) Determine the Cop if the condenser pressure is 800 Kpa and other values remain the same.
Refrigerant 134a enters a compressor of a vapour compression of a refrigeration cycle at 120Kpa as a saturated vapour and leaves at 900 Kpa and 75oc. The refrigerant leaves the condenser as a saturated liquid. The rate of cooling provided by the system is 18000 Btu/hr. Determine (1) Mass flow rate of R134a (2) The Cop of the cycle (3) Also determine the Cop of the cycle if the expansion valve is replaced by an isentropic turbine. Do you recommend such a replacement for the refrigeration system? (4) Determine the Cop if the evaporator pressure is 160Kpa and otheer values remains the same. (5) Determine the Cop if the condenser pressure is 800 Kpa and other values remain the same.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
: Refrigerant 134a enters a compressor of a vapour compression of a refrigeration cycle at 120Kpa as a saturated vapour and leaves at 900 Kpa and 75oc. The refrigerant leaves the condenser as a saturated liquid. The rate of cooling provided by the system is 18000 Btu/hr. Determine (1) Mass flow rate of R134a (2) The Cop of the cycle (3) Also determine the Cop of the cycle if the expansion valve is replaced by an isentropic turbine. Do you recommend such a replacement for the refrigeration system? (4) Determine the Cop if the evaporator pressure is 160Kpa and otheer values remains the same. (5) Determine the Cop if the condenser pressure is 800 Kpa and other values remain the same.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 7 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY