Recursion: Complete the definition for sum_prime_digits, which returns the sum of all the prime digits of n. Recall that 0 and 1 are not prime numbers. Assume you have the function is_prime() defined already and ready to use (Ex: is_prime(5) will return True). You may use the below guidelines or you may suggest your own solution. Your solution should be recursive. def sum prime_digits (n): >>> sum prime_digits (12345) 10 >>> sum_prime_digits (4681029) 2 if return else: if return return 2 W 9 # 3 E F 3 $ 4 R DII % 5 65 T K A 6 Y 17 & 7 Prisen U 16 8

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Python help now

### Educational Content on Recursion

**Recursion Task:**

The task is to complete the definition for the function `sum_prime_digits`, which returns the sum of all the prime digits in a given number `n`. Remember that 0 and 1 are not considered prime numbers. It is assumed that you have access to a pre-defined function `is_prime()` that can be used to check the primality of a digit. For example, `is_prime(5)` will return `True`.

You can follow the guidelines below or create your own solution. The solution must be recursive.

```python
def sum_prime_digits(n):
    """
    Calculate the sum of all prime digits of n recursively.

    Args:
    n (int): The input number from which prime digits need to be summed.

    Returns:
    int: The sum of all prime digits in the input number.
    """
    # Base case
    if n == 0:
        return 0
    else:
        current_digit = n % 10  # Get the last digit of n
        # Recursive call with the remainder of the number
        if is_prime(current_digit):
            return current_digit + sum_prime_digits(n // 10)
        else:
            return sum_prime_digits(n // 10)

# Example usage:
>>> sum_prime_digits(12345)  # Evaluates the sum of prime digits in 12345
10
>>> sum_prime_digits(4681029)  # Evaluates the sum of prime digits in 4681029
2
```

**Explanation:**

- The function `sum_prime_digits` recursively determines the sum of prime digits of an integer `n`.
- The base case returns `0` if `n` is `0`.
- Uses the modulo operation to extract the last digit of `n`.
- Checks if the extracted digit is prime with `is_prime()`. If true, it adds the digit to the recursive call. If not, it simply makes the recursive call without adding the digit.
- Example calls demonstrate how the function evaluates the sum of prime digits in the numbers `12345` and `4681029`.
Transcribed Image Text:### Educational Content on Recursion **Recursion Task:** The task is to complete the definition for the function `sum_prime_digits`, which returns the sum of all the prime digits in a given number `n`. Remember that 0 and 1 are not considered prime numbers. It is assumed that you have access to a pre-defined function `is_prime()` that can be used to check the primality of a digit. For example, `is_prime(5)` will return `True`. You can follow the guidelines below or create your own solution. The solution must be recursive. ```python def sum_prime_digits(n): """ Calculate the sum of all prime digits of n recursively. Args: n (int): The input number from which prime digits need to be summed. Returns: int: The sum of all prime digits in the input number. """ # Base case if n == 0: return 0 else: current_digit = n % 10 # Get the last digit of n # Recursive call with the remainder of the number if is_prime(current_digit): return current_digit + sum_prime_digits(n // 10) else: return sum_prime_digits(n // 10) # Example usage: >>> sum_prime_digits(12345) # Evaluates the sum of prime digits in 12345 10 >>> sum_prime_digits(4681029) # Evaluates the sum of prime digits in 4681029 2 ``` **Explanation:** - The function `sum_prime_digits` recursively determines the sum of prime digits of an integer `n`. - The base case returns `0` if `n` is `0`. - Uses the modulo operation to extract the last digit of `n`. - Checks if the extracted digit is prime with `is_prime()`. If true, it adds the digit to the recursive call. If not, it simply makes the recursive call without adding the digit. - Example calls demonstrate how the function evaluates the sum of prime digits in the numbers `12345` and `4681029`.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Array
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education