Reconsider Prob. 14–54. Using EES (or other) software, plot the highest rate of hydrogen loss as a function of the mole fraction of hydrogen in natural gas as the mole fraction varies from 5 to 15 percent, and discuss the results. Prob The solubility of hydrogen gas in steel in terms of its mass fraction is given as where PH2 is the partial pressure of hydrogen in bars and T is the temperature in K. If natural gas is transported in a 1-cm-thick, 3-m-internal-diameter steel pipe at 500 kPa pressure and the mole fraction of hydrogen in the natural gas is 8 percent, determine the highest rate of hydrogen loss through a 100-m-long section of the pipe at steady conditions at a temperature of 293 K if the pipe is exposed to air. Take the diffusivity of hydrogen in steel to be 2.9 x 10-13 m2 /s.
Reconsider Prob. 14–54. Using EES (or other) software, plot the highest rate of hydrogen loss as a function of the mole fraction of hydrogen in natural gas as the mole fraction varies from 5 to 15 percent, and discuss the results.
Prob
The solubility of hydrogen gas in steel in terms of its mass fraction is given as where PH2 is the partial pressure of hydrogen in bars and T is the temperature in K. If natural gas is transported in a 1-cm-thick, 3-m-internal-diameter steel pipe at 500 kPa pressure and the mole fraction of hydrogen in the natural gas is 8 percent, determine the highest rate of hydrogen loss through a 100-m-long section of the pipe at steady conditions at a temperature of 293 K if the pipe is exposed to air. Take the diffusivity of hydrogen in steel to be 2.9 x 10-13 m2 /s.
Step by step
Solved in 3 steps with 2 images