Recall that the direct sum V₁ V₂ is defined to be the space of pairs of vectors (v₁, v2) such that V1 € V₁, V2 € V₂ where the vector space structure is defined by the componentwise addition and simultaneous scalar multiplication. (1) Show that there is an isomorphism U ® (V₁ © V₂) ≈ (U ® V₁ ) + (U ® V₂). (2) Show that (V₁ © V₂)* ≈ V₁* © V₂. (3)* Show that (V₁ ® V₂) * = V₁ V₂.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Asap 

Recall that the direct sum V₁ V2 is defined to be the space of pairs of vectors (v₁, V₂) such
that v₁ € V₁, V2 € V₂ where the vector space structure is defined by the componentwise addition
and simultaneous scalar multiplication.
(1) Show that there is an isomorphism
U ® (V₁ © V₂) ≈ (U ® V₁ ) ℗ (U ® V₂).
(2) Show that (V₁ © V₂2)* ≈ V₁* © V₂* .
(3)* Show that (V₁ ® V ₂)* ≈ V₁ V₂.
Transcribed Image Text:Recall that the direct sum V₁ V2 is defined to be the space of pairs of vectors (v₁, V₂) such that v₁ € V₁, V2 € V₂ where the vector space structure is defined by the componentwise addition and simultaneous scalar multiplication. (1) Show that there is an isomorphism U ® (V₁ © V₂) ≈ (U ® V₁ ) ℗ (U ® V₂). (2) Show that (V₁ © V₂2)* ≈ V₁* © V₂* . (3)* Show that (V₁ ® V ₂)* ≈ V₁ V₂.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,