Read the SageMath code for understanding, and evaluate the SageCell. Use your findings to provide a matrix H such that HAH¹ = C. A = -17 19 16 3 -5 -19 -3 20; C = 15 4083 31 81100 31 30576 31 2661 62 3262 31 11087 31 1597 62 2439 31 7376 31

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Understanding SageMath Code for Matrix Transformation**

This educational content explores how to use SageMath to find a matrix \( H \) such that \( HAH^{-1} = C \).

**Given Matrices:**

\[ A = \begin{bmatrix} -17 & 19 & -3 \\ 16 & 3 & 20 \\ -5 & -19 & 15 \end{bmatrix} \]

\[ C = \begin{bmatrix} \frac{4083}{31} & \frac{2661}{62} & \frac{1597}{62} \\ \frac{8110}{31} & -\frac{3262}{31} & \frac{2439}{31} \\ \frac{30576}{31} & -\frac{11087}{31} & \frac{7376}{31} \end{bmatrix} \]

**SageMath Code Explanation:**

1. **Variables Initialization:**
   ``` 
   var('a,b,c,d,f,g,h,j,k')
   ```
   This line declares the variables which will represent the unknown elements of matrix \( H \).

2. **Matrix Definitions:**
   ```
   A = matrix(3,3,[-17,19,-3,16,3,20,-5,-19,15])
   C = matrix(3,3,[4083/31,2661/62,-1597/62,8110/31,-3262/31,2439/31,30576/31,-11087/31,7376/31])
   ```
   Here, matrices \( A \) and \( C \) are defined using the specified elements.

3. **Unknown Matrix \( H \):**
   ```
   H = matrix(3,3,[a,b,c,d,f,g,h,j,k])
   ```
   The unknown matrix \( H \) is initialized as a 3x3 matrix containing the variables.

4. **Matrix Display:**
   ```
   print(A); print(); print(C); print()
   ```
   This section prints matrices \( A \) and \( C \).

5. **Solving for Matrix \( H \):**
   ```
   print(solve((H*A-C*H).list(),[a,b,c,d,f,g,h,j,k]))
   ```
   The solve function is used to find the values of the variables that satisfy the equation \( HAH
Transcribed Image Text:**Understanding SageMath Code for Matrix Transformation** This educational content explores how to use SageMath to find a matrix \( H \) such that \( HAH^{-1} = C \). **Given Matrices:** \[ A = \begin{bmatrix} -17 & 19 & -3 \\ 16 & 3 & 20 \\ -5 & -19 & 15 \end{bmatrix} \] \[ C = \begin{bmatrix} \frac{4083}{31} & \frac{2661}{62} & \frac{1597}{62} \\ \frac{8110}{31} & -\frac{3262}{31} & \frac{2439}{31} \\ \frac{30576}{31} & -\frac{11087}{31} & \frac{7376}{31} \end{bmatrix} \] **SageMath Code Explanation:** 1. **Variables Initialization:** ``` var('a,b,c,d,f,g,h,j,k') ``` This line declares the variables which will represent the unknown elements of matrix \( H \). 2. **Matrix Definitions:** ``` A = matrix(3,3,[-17,19,-3,16,3,20,-5,-19,15]) C = matrix(3,3,[4083/31,2661/62,-1597/62,8110/31,-3262/31,2439/31,30576/31,-11087/31,7376/31]) ``` Here, matrices \( A \) and \( C \) are defined using the specified elements. 3. **Unknown Matrix \( H \):** ``` H = matrix(3,3,[a,b,c,d,f,g,h,j,k]) ``` The unknown matrix \( H \) is initialized as a 3x3 matrix containing the variables. 4. **Matrix Display:** ``` print(A); print(); print(C); print() ``` This section prints matrices \( A \) and \( C \). 5. **Solving for Matrix \( H \):** ``` print(solve((H*A-C*H).list(),[a,b,c,d,f,g,h,j,k])) ``` The solve function is used to find the values of the variables that satisfy the equation \( HAH
Expert Solution
steps

Step by step

Solved in 4 steps with 19 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,