Executing the following sage code constructs a matrix Q, then prints the matrix and its reduced row echelon form. Q=matrix(QQ, 4, 3, [-7, -22,-4, 12, 137, -13,-18, -213,21,15,115,-5]) print(Q) print() print(Q.rref()) The output is: -4] [ -7 -22 [ 12 137 -13] [-18 -213 21] [ 15 115 -5] [ [ [ 1 0 0 0 6/5] 1 -1/5] 0 0 0] 0] Are the columns of matrix Q linearly dependent, or linearly independent?
Executing the following sage code constructs a matrix Q, then prints the matrix and its reduced row echelon form. Q=matrix(QQ, 4, 3, [-7, -22,-4, 12, 137, -13,-18, -213,21,15,115,-5]) print(Q) print() print(Q.rref()) The output is: -4] [ -7 -22 [ 12 137 -13] [-18 -213 21] [ 15 115 -5] [ [ [ 1 0 0 0 6/5] 1 -1/5] 0 0 0] 0] Are the columns of matrix Q linearly dependent, or linearly independent?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Executing the following Sage code constructs a matrix Q, then prints the matrix and its reduced row echelon form.**
```sage
Q = matrix(QQ, 4, 3, [-7, -22, -4, 12, 137, -13, -18, -213, 21, 15, 115, -5])
print(Q)
print()
print(Q.rref())
```
**The output is:**
\[
\begin{bmatrix}
-7 & -22 & -4 \\
12 & 137 & -13 \\
-18 & -213 & 21 \\
15 & 115 & -5 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0 & \frac{6}{5} \\
0 & 1 & -\frac{1}{5} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]
**Are the columns of matrix Q linearly dependent, or linearly independent?**
The rows show the transformation to reduced row echelon form (RREF), where only two leading 1s indicate that the rank is less than the number of columns. This suggests the columns are linearly dependent.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F46eaea45-b11e-4a43-81b9-96bb1c4e5e25%2Ff5e3dac7-aca3-44eb-b798-61451536b8ab%2Frv9hlyg_processed.png&w=3840&q=75)
Transcribed Image Text:**Executing the following Sage code constructs a matrix Q, then prints the matrix and its reduced row echelon form.**
```sage
Q = matrix(QQ, 4, 3, [-7, -22, -4, 12, 137, -13, -18, -213, 21, 15, 115, -5])
print(Q)
print()
print(Q.rref())
```
**The output is:**
\[
\begin{bmatrix}
-7 & -22 & -4 \\
12 & 137 & -13 \\
-18 & -213 & 21 \\
15 & 115 & -5 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0 & \frac{6}{5} \\
0 & 1 & -\frac{1}{5} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]
**Are the columns of matrix Q linearly dependent, or linearly independent?**
The rows show the transformation to reduced row echelon form (RREF), where only two leading 1s indicate that the rank is less than the number of columns. This suggests the columns are linearly dependent.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Linearly independent vectors
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)