Read the following program project1.cpp carefully. Complete the missing code as indicated by the comments. Then compile, debug and test your program using the command lines below before your submission:   ​c++ -o project1 project1.cpp ​./project1 n m k   Where n is the size of the stack, m is the modular of the real part and imagination part of a random complex number, and k is the number of elements displayed per line.   In the main function, you need to 1. Get the values n, m, and k from the command line. 2. Declare a complex number stack of size n, generate n random complex numbers and push them into the stack. Meantime display all these numbers, k numbers per line. 3. Display all elements of the stack, k elements per line.   4. Create two random complex numbers c1 and c2, display c1,  c2 and the results of the addition c1+c2, the subtraction c1-c2, the multiplication c1*c2, and the division c1/c2.   // project1.cpp   #include #include #include using namespace std;   class Complex {​// complex number class        float re;​// real part        float im;​// imagination part   public:        Complex(float r=0.0, float i=0.0){re=r; im=i;}​// constructor        Complex(const Complex& c){re=c.re; im=c.im;}​// copy constructor        void operator =(const Complex& c){re=c.re; im=c.im;}​// assignment        Complex operator -()const{return Complex(-re, -im);}​// unary negation        Complex operator +(const Complex&) const;​// addition operator        Complex operator -(const Complex&) const;​// subtraction operator        Complex operator *(const Complex&) const;​// multiplication operator        Complex operator /(const Complex&) const;​//division operator        friend ostream& operator <<(ostream&, const Complex&);​// output operator };   // overloaded addition operator, to be implemented Complex Complex::operator +(const Complex& c) const {}​   // overloaded subtraction operator, to be implemented​ Complex Complex::operator -(const Complex& c) const{}​   // overloaded multiplication operator, to be implemented​ Complex Complex::operator *(const Complex& c) const {}​   // overloaded division operator, to be implemented Complex Complex::operator /(const Complex& c) const {}​   // overloaded stream output operator, to be implemented​ ostream& operator <<(ostream& os, const Complex& c) {}​   template class myStack{       T *ptr;​// storage body       int size;​// storage size       int top;​// top position ​ public:       myStack(int);​// constructor       ~myStack(){free(ptr);}​// destructor       bool empty(){return top==-1;}​// empty or not       bool full(){return top==size-1;}​// full or not       int hold(){return top+1;}​// number of items hold       void push(T v){ptr[++top]=v;}​// put an item on top       T pop(){return ptr[top--];}​// take an item from top       void display(int);​// display items };   // constructor that creates an empty stack, to be implemented template myStack::myStack(int s){}​   // display function, k items per line, to be implemented template void myStack::display(int k){}​   // Operator Overloading and Stack Template Program int main(int argc, char **argv){        // get n, m, and k from command line and create a complex number stack s(n)​         // generate n number of random complex numbers and push them onto the stack,       // meantime display these complex numbers, k items per line         // display all complex numbers in the stack, k elements per line   // create two random complex numbers c1 and c2, display c1, c2 // display the results of the addition c1+c2, the subtraction c1-c2, the   multiplication c1*c2, and the division c1/c2.          return 0; }

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Read the following program project1.cpp carefully. Complete the missing code as indicated by the comments. Then compile, debug and test your program using the command lines below before your submission:

 

​c++ -o project1 project1.cpp <enter>

​./project1 n m k <enter>

 

Where n is the size of the stack, m is the modular of the real part and imagination part of a random complex number, and k is the number of elements displayed per line.

 

In the main function, you need to

1. Get the values n, m, and k from the command line.
2. Declare a complex number stack of size n, generate n random complex numbers and push them into the stack. Meantime display all these numbers, k numbers per line.
3. Display all elements of the stack, k elements per line.  
4. Create two random complex numbers c1 and c2, display c1,  c2 and the results of the addition c1+c2, the subtraction c1-c2, the multiplication c1*c2, and the division c1/c2.

 

// project1.cpp

 

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

 

class Complex {​// complex number class

       float re;​// real part

       float im;​// imagination part

 

public:

       Complex(float r=0.0, float i=0.0){re=r; im=i;}​// constructor

       Complex(const Complex& c){re=c.re; im=c.im;}​// copy constructor

       void operator =(const Complex& c){re=c.re; im=c.im;}​// assignment

       Complex operator -()const{return Complex(-re, -im);}​// unary negation

       Complex operator +(const Complex&) const;​// addition operator

       Complex operator -(const Complex&) const;​// subtraction operator

       Complex operator *(const Complex&) const;​// multiplication operator

       Complex operator /(const Complex&) const;​//division operator

       friend ostream& operator <<(ostream&, const Complex&);​// output operator

};

 

// overloaded addition operator, to be implemented

Complex Complex::operator +(const Complex& c) const {}​

 

// overloaded subtraction operator, to be implemented​

Complex Complex::operator -(const Complex& c) const{}​

 

// overloaded multiplication operator, to be implemented​

Complex Complex::operator *(const Complex& c) const {}​

 

// overloaded division operator, to be implemented

Complex Complex::operator /(const Complex& c) const {}​

 

// overloaded stream output operator, to be implemented​

ostream& operator <<(ostream& os, const Complex& c) {}​

 

template <class T> class myStack{

      T *ptr;​// storage body

      int size;​// storage size

      int top;​// top position

public:

      myStack(int);​// constructor

      ~myStack(){free(ptr);}​// destructor

      bool empty(){return top==-1;}​// empty or not

      bool full(){return top==size-1;}​// full or not

      int hold(){return top+1;}​// number of items hold

      void push(T v){ptr[++top]=v;}​// put an item on top

      T pop(){return ptr[top--];}​// take an item from top

      void display(int);​// display items

};

 

// constructor that creates an empty stack, to be implemented

template <class T> myStack<T>::myStack(int s){}​

 

// display function, k items per line, to be implemented

template <class T> void myStack<T>::display(int k){}​

 

// Operator Overloading and Stack Template Program

int main(int argc, char **argv){

       // get n, m, and k from command line and create a complex number stack s(n)​

 

      // generate n number of random complex numbers and push them onto the stack,

      // meantime display these complex numbers, k items per line

 

      // display all complex numbers in the stack, k elements per line

 

// create two random complex numbers c1 and c2, display c1, c2

// display the results of the addition c1+c2, the subtraction c1-c2, the   multiplication c1*c2, and the division c1/c2.  

 

     return 0;

}

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Stack
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education