Reaction is Irreversible in Gas Phase in Tubular Reactor. T = Constant & Ignore Pressure Drops. Feed Volumetric Flowrate = 2400 h Concentration of Y₁ = 5.0 gmol L gmol Concentration of Y₂ = 7.0% L Concentration of Inerts = 3.0 gmol L 3Y₁ +4Y₂ → 3Y3 +4Y4 Q1) Determine the limiting reactant for the given system & reaction. Q2) Fill out table Species Y₁ Y₂ Y3 Y₁ Symbol Initial Moles gmol Fjo hour 12,000 16,800 0 0 Change Final F; Concentration C; A B C D Inert | 0 Q3) Calc the concentration of Y3 & the concentration of Y4 @ at point in reactor where conversion of the limiting reactant is 60%
Reaction is Irreversible in Gas Phase in Tubular Reactor. T = Constant & Ignore Pressure Drops. Feed Volumetric Flowrate = 2400 h Concentration of Y₁ = 5.0 gmol L gmol Concentration of Y₂ = 7.0% L Concentration of Inerts = 3.0 gmol L 3Y₁ +4Y₂ → 3Y3 +4Y4 Q1) Determine the limiting reactant for the given system & reaction. Q2) Fill out table Species Y₁ Y₂ Y3 Y₁ Symbol Initial Moles gmol Fjo hour 12,000 16,800 0 0 Change Final F; Concentration C; A B C D Inert | 0 Q3) Calc the concentration of Y3 & the concentration of Y4 @ at point in reactor where conversion of the limiting reactant is 60%
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Plz help w/anything quickly
![**Chemical Reaction in Tubular Reactor**
**Reaction:**
The reaction is irreversible and occurs in the gas phase within a tubular reactor.
\[ T = \text{Constant} \quad \& \quad \text{Ignore Pressure Drops.} \]
\[ 3Y_1 + 4Y_2 \rightarrow 3Y_3 + 4Y_4 \]
**Feed Conditions:**
- **Volumetric Flowrate:** \( 2400 \, \frac{L}{h} \)
- **Concentration of \( Y_1 \):** \( 5.0 \, \frac{g \, mol}{L} \)
- **Concentration of \( Y_2 \):** \( 7.0 \, \frac{g \, mol}{L} \)
- **Concentration of Inerts:** \( 3.0 \, \frac{g \, mol}{L} \)
**Questions:**
**Q1)** Determine the limiting reactant for the given system & reaction.
**Q2)** Fill out the table:
| Species | Symbol | Initial Moles \( F_{j0} \, \frac{g \, mol}{hour} \) | Change | Final \( F_j \) | Concentration \( C_j \) |
|---------|--------|------------------------------------------|--------|---------|-------------------|
| \( Y_1 \) | A | 12,000 | | | |
| \( Y_2 \) | B | 16,800 | | | |
| \( Y_3 \) | C | 0 | | | |
| \( Y_4 \) | D | 0 | | | |
| Inert | I | 0 | 0 | 0 | |
**Q3)** Calculate the concentration of \( Y_3 \) and the concentration of \( Y_4 \) at the point in the reactor where the conversion of the limiting reactant is 60%.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F63f5865a-7713-44c4-be73-1c5678c4385b%2Fbd0cf16f-9c91-4a07-910d-e0b37b58cef9%2Fy5uc4u7_processed.png&w=3840&q=75)
Transcribed Image Text:**Chemical Reaction in Tubular Reactor**
**Reaction:**
The reaction is irreversible and occurs in the gas phase within a tubular reactor.
\[ T = \text{Constant} \quad \& \quad \text{Ignore Pressure Drops.} \]
\[ 3Y_1 + 4Y_2 \rightarrow 3Y_3 + 4Y_4 \]
**Feed Conditions:**
- **Volumetric Flowrate:** \( 2400 \, \frac{L}{h} \)
- **Concentration of \( Y_1 \):** \( 5.0 \, \frac{g \, mol}{L} \)
- **Concentration of \( Y_2 \):** \( 7.0 \, \frac{g \, mol}{L} \)
- **Concentration of Inerts:** \( 3.0 \, \frac{g \, mol}{L} \)
**Questions:**
**Q1)** Determine the limiting reactant for the given system & reaction.
**Q2)** Fill out the table:
| Species | Symbol | Initial Moles \( F_{j0} \, \frac{g \, mol}{hour} \) | Change | Final \( F_j \) | Concentration \( C_j \) |
|---------|--------|------------------------------------------|--------|---------|-------------------|
| \( Y_1 \) | A | 12,000 | | | |
| \( Y_2 \) | B | 16,800 | | | |
| \( Y_3 \) | C | 0 | | | |
| \( Y_4 \) | D | 0 | | | |
| Inert | I | 0 | 0 | 0 | |
**Q3)** Calculate the concentration of \( Y_3 \) and the concentration of \( Y_4 \) at the point in the reactor where the conversion of the limiting reactant is 60%.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 5 images

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The