R134a is used as a working fluid in a cooling system with a cooling capacity of 50 kJ/s operating according to the ideal vapor compression refrigeration cycle. The refrigerant enters the compressor as saturated steam at a pressure of 120 kPa and is compressed to a pressure of 650 kPa. The mass flow of R-134a is 0.10 kg/s. If an isentropic turbine is used instead of the throttle valve in the cooling system, what is the efficiency coefficient of the system?
R134a is used as a working fluid in a cooling system with a cooling capacity of 50 kJ/s operating according to the ideal vapor compression refrigeration cycle. The refrigerant enters the compressor as saturated steam at a pressure of 120 kPa and is compressed to a pressure of 650 kPa. The mass flow of R-134a is 0.10 kg/s. If an isentropic turbine is used instead of the throttle valve in the cooling system, what is the efficiency coefficient of the system?
A-3,689
B-3.215
C-4.513
D-3.245
E-4.123
(Note: This question is Turkish) orginal question:
İdeal buhar sıkıştırmalı soğutma çevrimine göre çalışan soğutma kapasitesi 50 kJ/s olan bir soğutma sisteminde iş akışkanı olarak R134a kullanılmaktadır. Soğutucu akışkan kompresöre 120 kPa basınçta doymuş buhar olarak girmekte ve 650 kPa basınca sıkıştırılmaktadır. R-134a’nın kütlesi debisi 0.10 kg/s’dir. Eğer soğutma sistemindeki kısılma vanası yerine izantropik bir türbin kullanılırsa sistemin etkinlik katsayısı ne olur?
![](/static/compass_v2/shared-icons/check-mark.png)
The cooling capacity of the system is given as,
The conditions of the refrigerant at the compressor inlet,
On using R-134a table, and calculate enthalpy and temperature at the compressor inlet
The temperature of the fluid after compression,
The specific heat ratio for R-134a is 1.20.
So,
On using R-134a table, the enthalpy at P2=650 kPa,
Enthalpy at point of compressor exit,
Step by step
Solved in 2 steps with 9 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)