QUESTION 9. Convert the following CFG to a CFG in Chomsky Normal Form (CNF): G=(V, {0, 1), P, S), where V = {S, A, B, C, D) and P contains the following rules: S→ AB|AC|D A → 0A0|1A1|0 B→ OB|1B|e D→ AA

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

I would like a detailed explanation on how to get to the right answer since I want to be able to understand how to solve it thank you The topic is Theory of Automata

Question is not graded 

### Conversion of CFG to Chomsky Normal Form (CNF)

#### Question 9: Convert the following CFG to a CFG in Chomsky Normal Form (CNF)
Given \( G = (V, \{0, 1\}, P, S) \), where \( V = \{S, A, B, C, D\} \) and \( P \) contains the following rules:
- \( S \rightarrow AB | AC | D \)
- \( A \rightarrow 0A0 | 1A1 | 0 \)
- \( B \rightarrow 0B | 1B | \epsilon | 1 \)
- \( D \rightarrow AA \)

#### 1. Elimination of \( \epsilon \)-productions:
- \( S \rightarrow AB | AC | D | A \)
- \( A \rightarrow 0A0 | 1A1 | 0 \)
- \( B \rightarrow 0B | 1B | 0 | 1 \)
- \( D \rightarrow AA \)

#### 2. Elimination of unit-productions:
- \( S \rightarrow AB | AC | 1A | 0A | 0A0 | 1A1 | 0 \)
- \( A \rightarrow 0A0 | 1A1 | 0 \)
- \( B \rightarrow 0B | 1B | 0 | 1 \)
- \( D \rightarrow AA \)

#### 3. Elimination of useless variables:
- \( C \) is eliminated because it is not generating.
- \( D \) is eliminated because it is not reachable.

Resulting in:
- \( S \rightarrow AB | A0 | A | A1 | 0 \)
- \( A \rightarrow 0A0 | 1A1 | 0 \)
- \( B \rightarrow 0B | 1B | 0 | 1 \)

#### 4. Final Answer:
- \( S \rightarrow AB | AA0 | AO | A1 | 0 \)
- \( A \rightarrow 0A0 | 1A1 | 0 \)
- \( B \rightarrow 0B | 1B | 0 | 1 \)
- \( A_0 \rightarrow AO \)
- \( A_1 \rightarrow A1 \)
- \( O \rightarrow
Transcribed Image Text:### Conversion of CFG to Chomsky Normal Form (CNF) #### Question 9: Convert the following CFG to a CFG in Chomsky Normal Form (CNF) Given \( G = (V, \{0, 1\}, P, S) \), where \( V = \{S, A, B, C, D\} \) and \( P \) contains the following rules: - \( S \rightarrow AB | AC | D \) - \( A \rightarrow 0A0 | 1A1 | 0 \) - \( B \rightarrow 0B | 1B | \epsilon | 1 \) - \( D \rightarrow AA \) #### 1. Elimination of \( \epsilon \)-productions: - \( S \rightarrow AB | AC | D | A \) - \( A \rightarrow 0A0 | 1A1 | 0 \) - \( B \rightarrow 0B | 1B | 0 | 1 \) - \( D \rightarrow AA \) #### 2. Elimination of unit-productions: - \( S \rightarrow AB | AC | 1A | 0A | 0A0 | 1A1 | 0 \) - \( A \rightarrow 0A0 | 1A1 | 0 \) - \( B \rightarrow 0B | 1B | 0 | 1 \) - \( D \rightarrow AA \) #### 3. Elimination of useless variables: - \( C \) is eliminated because it is not generating. - \( D \) is eliminated because it is not reachable. Resulting in: - \( S \rightarrow AB | A0 | A | A1 | 0 \) - \( A \rightarrow 0A0 | 1A1 | 0 \) - \( B \rightarrow 0B | 1B | 0 | 1 \) #### 4. Final Answer: - \( S \rightarrow AB | AA0 | AO | A1 | 0 \) - \( A \rightarrow 0A0 | 1A1 | 0 \) - \( B \rightarrow 0B | 1B | 0 | 1 \) - \( A_0 \rightarrow AO \) - \( A_1 \rightarrow A1 \) - \( O \rightarrow
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Introduction to classical planning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education