Question 2: (For this problem simply interpret the situation by drawing a motion diagram showing the object's position and its velocity vectors. Do not solve this problem using any mathematics.) 49. A motorist is traveling at 20 m/s. He is 60 m from a stop light when he sees it turn yellow. His reaction time, before stepping on the brake, is 0.50 s. What steady deceleration while braking will bring him to a stop right at the light?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Question 2: (For this problem simply interpret the situation by drawing a motion diagram showing the object's position and its velocity vectors. Do not solve this problem using any mathematics.)
49. A motorist is traveling at 20 m/s. He is 60 m from a stop light when he sees it turn yellow. His reaction time, before stepping on the brake, is 0.50 s. What steady deceleration while braking will bring him to a stop right at the light?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images