Question # 2: Consider an open economy with three industries: coal-mining operation, electricity-generating plant and an auto-manufacturing plant. To produce $1 of coal, the mining operation must purchase $0.1 of its own production, $0.30 of electricity and $0.1 worth of automobile for its transportation. To produce $1 of electricity, it takes $0.25 of coal, $0.4 of electricity and $0.15 of automobile. Finally, to produce $1 worth of automobile, the auto-manufacturing plant must purchase $0.2 of coal, s0.5 of electricity and consume $0.1 of automobile. Assume also that during a period of one week, the economy has an exterior demand of $50,000 worth of coal, $75,000 worth of electricity, and $125,000 worth of autos. Lets suppose that equation for production (output) is given by P = (1 - A)d. Where A is the coefficient matrix having each sector's purchase as column entries and d is the demand vector. I is corresponding n*n square matrix Find the production level of each of the three industries in that period of one week in order to exactly satisfy both the internal and the external demands.
Question # 2: Consider an open economy with three industries: coal-mining operation, electricity-generating plant and an auto-manufacturing plant. To produce $1 of coal, the mining operation must purchase $0.1 of its own production, $0.30 of electricity and $0.1 worth of automobile for its transportation. To produce $1 of electricity, it takes $0.25 of coal, $0.4 of electricity and $0.15 of automobile. Finally, to produce $1 worth of automobile, the auto-manufacturing plant must purchase $0.2 of coal, s0.5 of electricity and consume $0.1 of automobile. Assume also that during a period of one week, the economy has an exterior demand of $50,000 worth of coal, $75,000 worth of electricity, and $125,000 worth of autos. Lets suppose that equation for production (output) is given by P = (1 - A)d. Where A is the coefficient matrix having each sector's purchase as column entries and d is the demand vector. I is corresponding n*n square matrix Find the production level of each of the three industries in that period of one week in order to exactly satisfy both the internal and the external demands.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Application of
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,