QUESTION 2 a²u If consider the problem 2- = 00 Əx² with boundary conditions u(0, t) = 0 and u(1, t)=0 and initial condition u(x,0) = 3. If X(x) = A cos(xx) + B sin(ax) and T(t) = Ce-2a²t are the solutions of separated equations when separation of variable constant is λ = a² > 0. Then the general solution is: 8 u(x, t) = Σ n=1 u(x,t)= Σ n=1 8 u(x, t) = [ n=1 Ou(x, t) = E n=1 8 u(x, t) = Σ n=1 2(1-(-1)") 3nπ -e-2n²π²tsin(nπx) 6(1 + (-1)")-2n²r²tsin(ntx) e nπ 6(1-(-1)") -2n²²¹sin(nπx) nπt 6(1-(-1)")e-3ntsin(nπx) nπ e 3(1+(-1)") 2nπ -e-3n²π²tsin(nπx)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
QUESTION 2
a²u ди
If consider the problem 2- =
Əx²
0<x< 1, t>0
with boundary conditions u(0, t) = 0 and u(1, t)=0
and initial condition u(x,0) = 3.
EES
If X(x) = A cos(xx) + B sin(ax) and T(t) = Ce-2a²1 are the solutions of separated equations
when separation of variable constant is λ = x² > 0.
Then the general solution is:
8
u(x, t) = Σ
n=1
u(x, t) = [
n=1
8
u(x, t) = [
n=1
u(x, t) = Σ
n=1
8
u(x, t) = Σ
n=1
2(1-(-1)")
3nπ
15
-e-2n²π²tsin(nπx)
6(1 + (-1)")-2n²r²tsin(ntx)
e
nπ
6(1-(-1)")
nπt
nπt
-e-2n²π²tsin(nπtx)
6(1-(-1)")e-3ntsin(nπx)
3(1+(-1)")
2nπ
-e-3n²π²tsin(nπx)
Transcribed Image Text:QUESTION 2 a²u ди If consider the problem 2- = Əx² 0<x< 1, t>0 with boundary conditions u(0, t) = 0 and u(1, t)=0 and initial condition u(x,0) = 3. EES If X(x) = A cos(xx) + B sin(ax) and T(t) = Ce-2a²1 are the solutions of separated equations when separation of variable constant is λ = x² > 0. Then the general solution is: 8 u(x, t) = Σ n=1 u(x, t) = [ n=1 8 u(x, t) = [ n=1 u(x, t) = Σ n=1 8 u(x, t) = Σ n=1 2(1-(-1)") 3nπ 15 -e-2n²π²tsin(nπx) 6(1 + (-1)")-2n²r²tsin(ntx) e nπ 6(1-(-1)") nπt nπt -e-2n²π²tsin(nπtx) 6(1-(-1)")e-3ntsin(nπx) 3(1+(-1)") 2nπ -e-3n²π²tsin(nπx)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,