Question 11) Vortices are usually shed from the rear of a cylinder, which are placed in a uniform flow at low speeds. The vortices alternatively leave the top and the bottom of the cylinder, as shown in figure, causing an altemating force normal because of generating a dimensionless relationship for Kánmán vortex shedding frequency f (1/s) as a function of free-stream speed V(7m/s), fluid density p (kgm³), fluid viscosity µ (kg/m.s), sound velocity c (m/s), surface roughness & (m) and cylinder diameter D(m). || I-Determine the nondimensional a parameters using repeating variables, involving f, , c and u as nonrepeating variables ii-the dynamics of Bhosphorus bridge is investigated in a wind tunnel for the vortex generation behind the wires. A 1/59 scaled down model of the hanging wires is used in the laboratory. If vortex shedding frequency of of Bhosphorus bridge 590 Hz is measured in the laboratory at 29 m/s. Then detemine the expected frequency in the actual case exposed to 190 km/h wind velocity.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
Question 11) Vortices are usually shed from the rear of a cylinder, which are placed in a uniform flow at low
speeds. The vortices alternatively leave the top and the bottom of the cylinder, as shown in figure, causing an
altemating force normal because of generating a dimensionless relationship for Kánmán vortex shedding
frequency f (1/s) as a function of free-stream speed V(7m/s), fluid density p (kgm³), fluid viscosity µ (kg/m.s),
sound velocity c (m/s), surface roughness & (m) and cylinder diameter D(m). ||
I-Determine the nondimensional a parameters using repeating variables, involving f, , c and u as
nonrepeating variables
ii-the dynamics of Bhosphorus bridge is investigated in a wind tunnel for the vortex generation behind the wires.
A 1/59 scaled down model of the hanging wires is used in the laboratory. If vortex shedding frequency of of
Bhosphorus bridge 590 Hz is measured in the laboratory at 29 m/s. Then detemine the expected frequency in
the actual case exposed to 190 km/h wind velocity.
Transcribed Image Text:Question 11) Vortices are usually shed from the rear of a cylinder, which are placed in a uniform flow at low speeds. The vortices alternatively leave the top and the bottom of the cylinder, as shown in figure, causing an altemating force normal because of generating a dimensionless relationship for Kánmán vortex shedding frequency f (1/s) as a function of free-stream speed V(7m/s), fluid density p (kgm³), fluid viscosity µ (kg/m.s), sound velocity c (m/s), surface roughness & (m) and cylinder diameter D(m). || I-Determine the nondimensional a parameters using repeating variables, involving f, , c and u as nonrepeating variables ii-the dynamics of Bhosphorus bridge is investigated in a wind tunnel for the vortex generation behind the wires. A 1/59 scaled down model of the hanging wires is used in the laboratory. If vortex shedding frequency of of Bhosphorus bridge 590 Hz is measured in the laboratory at 29 m/s. Then detemine the expected frequency in the actual case exposed to 190 km/h wind velocity.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 17 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY