Question 1 If z = x² sin(2x + 3y), then the partial derivative of z with respect to x is? (a) x² cos(2x + 3y) + 2xsin(2x + 3y) (b) 2x² cos(2x + 3y) + 2xsin(2x + 3y) (c) 4xcos(2x + 3y) (d) None of these

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Question 1
If z = x² sin(2x + 3y), then the partial derivative of z with respect to x is?
(a) x² cos(2x + 3y) + 2xsin(2x + 3y)
(b) 2x² cos(2x + 3y) + 2xsin(2x + 3y)
(c) 4xcos(2x + 3y)
(d) None of these
Question 2
If 0 = kHLV where V is a constant, then the maximum possible in the calculated value of 0 is?
(a)
ae
Ək
20
(b) SH
дн
=
-Sk + -SH+
20
ƏH
Question 3
If y
(b)
20
ƏL
(a) -3% of y
3ws2
d4
SL +
ae
-SL
ƏL
де
- SV
av
Ws
and w increases by 2%, s decreases by 3% and d increases by 1%. ds =?
d4
ae
20
(c) Sk + -SH+ -SL +
ae
ƏH
Ək
ƏL
av
(d) None of these
(c) 3% of s
(d) None of these
SV
Transcribed Image Text:Question 1 If z = x² sin(2x + 3y), then the partial derivative of z with respect to x is? (a) x² cos(2x + 3y) + 2xsin(2x + 3y) (b) 2x² cos(2x + 3y) + 2xsin(2x + 3y) (c) 4xcos(2x + 3y) (d) None of these Question 2 If 0 = kHLV where V is a constant, then the maximum possible in the calculated value of 0 is? (a) ae Ək 20 (b) SH дн = -Sk + -SH+ 20 ƏH Question 3 If y (b) 20 ƏL (a) -3% of y 3ws2 d4 SL + ae -SL ƏL де - SV av Ws and w increases by 2%, s decreases by 3% and d increases by 1%. ds =? d4 ae 20 (c) Sk + -SH+ -SL + ae ƏH Ək ƏL av (d) None of these (c) 3% of s (d) None of these SV
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,