Q3. At 298 K, F3SSF(g) decomposes partially to SF2(g). At equilibrium, the partial pressure of SF2(g) is 1.1X10-4 atm and the partial pressure of F3SSF is 0.0484 atm. (a) Write a balanced equilibrium equation to represent this reaction. (b) Compute the equilibrium constant corresponding to the equation you wrote. (c) Some SF2 (at a partial pressure of 2.3X10-4 atm) is placed in a closed container at 298 K with some F3SSF (at a partial pressure of 0.0484 atm). Enough argon is added to raise the total pressure to 1.000 atm. Calculate the initial reaction quotient for the decomposition of F3SSF to SF2.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Q3. At 298 K, F3SSF(g) decomposes partially to SF2(g). At equilibrium, the partial pressure of SF2(g) is 1.1X10-4 atm and the partial pressure of F3SSF is 0.0484 atm.

(a) Write a balanced equilibrium equation to represent this reaction.

(b) Compute the equilibrium constant corresponding to the equation you wrote.

(c) Some SF2 (at a partial pressure of 2.3X10-4 atm) is placed in a closed container at 298 K with some F3SSF (at a partial pressure of 0.0484 atm). Enough argon is added to raise the total pressure to 1.000 atm. Calculate the initial reaction quotient for the decomposition of F3SSF to SF2.

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY