Q3 For a university building, steam at 150°C for heating is supplied from a remote boiler house through a 35m length of insulated pipe over the road at first floor level. The pipe has an inside diameter of 0.15m with a wall thickness of 10mm and conductivity of 48 W/(m.K). The insulation is 50 mm thick with a conductivity of 0.87 W/(m.K). (a) State Fourier's law of conduction for an infinitely long cylinder and define the terminology used. (b) Calculate the heat loss when the atmospheric temperature is -5°C and the heat transfer coefficients between the steam and pipe and from the insulation to the atmosphere are 2.84 and 34.1 kW/(m2.K) respectively

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
I am struggling with this question. Part a and b
Q3 For a university building, steam at 150°C for heating is supplied from a remote boiler
house through a 35m length of insulated pipe over the road at first floor level. The
pipe has an inside diameter of 0.15m with a wall thickness of 10mm and conductivity
of 48 W/(m.K). The insulation is 50 mm thick with a conductivity of 0.87 W/(m.K).
(a) State Fourier's law of conduction for an infinitely long cylinder and define the
terminology used.
(b) Calculate the heat loss when the atmospheric temperature is -5°C and the heat
transfer coefficients between the steam and pipe and from the insulation to the
atmosphere are 2.84 and 34.1 kW/(m²2.K) respectively
Transcribed Image Text:Q3 For a university building, steam at 150°C for heating is supplied from a remote boiler house through a 35m length of insulated pipe over the road at first floor level. The pipe has an inside diameter of 0.15m with a wall thickness of 10mm and conductivity of 48 W/(m.K). The insulation is 50 mm thick with a conductivity of 0.87 W/(m.K). (a) State Fourier's law of conduction for an infinitely long cylinder and define the terminology used. (b) Calculate the heat loss when the atmospheric temperature is -5°C and the heat transfer coefficients between the steam and pipe and from the insulation to the atmosphere are 2.84 and 34.1 kW/(m²2.K) respectively
Expert Solution
steps

Step by step

Solved in 9 steps with 8 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY