Q1/ The fumace wall consists of 120 mm wide refractory brick and 120 mm wide insulating fire brick separated by an air gap. The outside wall is covered with a 12 mm thickness of plaster. The inner surface of the wall is at 1090°C and the room temperature is 20°C. The heat transfer coefficient from the outside wall surface to the air in the room is 18 W/m2 °C, and the resistance to heat flow of the air gap is 0.16 °C /W. If the thermal conductivities of the refractory brick, insulating fire brick, and plaster are 1.6, 0.3 and 0.14 W/m. °C, respectively calculates: (i) Rate at which heat is lost per m' of the wall surface; (ii) Each interface temperature.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.36P
icon
Related questions
Question
Q1/ The fumace wall consists of 120 mm wide
refractory brick and 120 mm wide insulating fire
brick separated by an air gap. The outside wall is
covered with a 12 mm thickness of plaster. The
inner surface of the wall is at 1090°C and the
room temperature is 20°C. The heat transfer
coefficient from the outside wall surface to the
air in the room is 18 W/m2 °C, and the resistance
to heat flow of the air gap is 0.16 °C /W. If the
thermal conductivities of the refractory brick,
insulating fire brick, and plaster are 1.6, 0.3 and
0.14 W/m. °C, respectively calculates: (i) Rate at
which heat is lost per m of the wall surface; (ii)
Each interface temperature.
Transcribed Image Text:Q1/ The fumace wall consists of 120 mm wide refractory brick and 120 mm wide insulating fire brick separated by an air gap. The outside wall is covered with a 12 mm thickness of plaster. The inner surface of the wall is at 1090°C and the room temperature is 20°C. The heat transfer coefficient from the outside wall surface to the air in the room is 18 W/m2 °C, and the resistance to heat flow of the air gap is 0.16 °C /W. If the thermal conductivities of the refractory brick, insulating fire brick, and plaster are 1.6, 0.3 and 0.14 W/m. °C, respectively calculates: (i) Rate at which heat is lost per m of the wall surface; (ii) Each interface temperature.
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning