Q1: Consider a large plane wall of thickness L= 0.4 m, thermal conductivity k=2.3 W/m °C, and surface area A= 20 m2. The left side of the wall at x= 0 is subjected of T1 = 80°C. while the right side losses heated by convection to the surrounding air at T-15 °C with a heat transfer coefficient of h=24 W/m2 °C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q1: Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k=2.3 W/m °C,
and surface area A= 20 m2. The left side of the wall at x= 0 is subjected of T1 = 80°C. while
the right side losses heated by convection to the surrounding air at T-15 °C with a heat
transfer coefficient of h=24 W/m2 C. Assuming constant thermal conductivity and no heat
generation in the wall, (a) express the differential equation and the boundary conditions for
steady one-dimensional heat conduction through the wall, (b) obtain a relation for the
variation of temperature in the wall by solving the differential equation, and (c) evaluate the
rate of heat transfer through the wall
Ans : (c) 6030 W
Transcribed Image Text:Q1: Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k=2.3 W/m °C, and surface area A= 20 m2. The left side of the wall at x= 0 is subjected of T1 = 80°C. while the right side losses heated by convection to the surrounding air at T-15 °C with a heat transfer coefficient of h=24 W/m2 C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall Ans : (c) 6030 W
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY