4. Two aluminum blocks with different dimensions, but the same mass are shown in the figure. The dimensions of block 1 are 0.25 cm in thickness, 3 cm in width, and 36 cm in length. The dimensions of block 2 are 3 cm for each side of the cube. Aluminum has a density of 2700 kg/m³ and a specific heat capacity of 900 J/kg-°C. The value of the heat transfer coefficient to the surrounding air is 10 W/m²-°C. 0.25 cm 36 cm 3 cm 3 cm Block 1 3 cm Block 2 3 cm Complete the following. (a) Calculate thermal time constant (in min) for both blocks. (b) Each block is heated to an initial temperature 120 °C and then allowed to cool in the surrounding air which is at 20 °C. Write a script file in MATLAB® that plots the temperature as a function of time, T(t), for both blocks on the same graph. Plot the temperature of block 1 using a solid black line and the temperature of block 2 using a dotted black line. Plot for a duration equal to four of the longer time constant between blocks 1 and 2. The time axis should be in units of minutes.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
4. Two aluminum blocks with different dimensions, but the same mass are shown in the
figure. The dimensions of block 1 are 0.25 cm in thickness, 3 cm in width, and 36 cm in
length. The dimensions of block 2 are 3 cm for each side of the cube. Aluminum has a
density of 2700 kg/m³ and a specific heat capacity of 900 J/kg-°C. The value of the heat
transfer coefficient to the surrounding air is 10 W/m²-°C.
0.25 cm
36 cm
3 cm
3 cm
Block 1
3 cm
Block 2
3 cm
Complete the following.
(a) Calculate thermal time constant (in min) for both blocks.
(b) Each block is heated to an initial temperature 120 °C and then allowed to cool in
the surrounding air which is at 20 °C. Write a script file in MATLAB® that plots the
temperature as a function of time, T(t), for both blocks on the same graph. Plot the
temperature of block 1 using a solid black line and the temperature of block 2 using
a dotted black line. Plot for a duration equal to four of the longer time constant
between blocks 1 and 2. The time axis should be in units of minutes.
Transcribed Image Text:4. Two aluminum blocks with different dimensions, but the same mass are shown in the figure. The dimensions of block 1 are 0.25 cm in thickness, 3 cm in width, and 36 cm in length. The dimensions of block 2 are 3 cm for each side of the cube. Aluminum has a density of 2700 kg/m³ and a specific heat capacity of 900 J/kg-°C. The value of the heat transfer coefficient to the surrounding air is 10 W/m²-°C. 0.25 cm 36 cm 3 cm 3 cm Block 1 3 cm Block 2 3 cm Complete the following. (a) Calculate thermal time constant (in min) for both blocks. (b) Each block is heated to an initial temperature 120 °C and then allowed to cool in the surrounding air which is at 20 °C. Write a script file in MATLAB® that plots the temperature as a function of time, T(t), for both blocks on the same graph. Plot the temperature of block 1 using a solid black line and the temperature of block 2 using a dotted black line. Plot for a duration equal to four of the longer time constant between blocks 1 and 2. The time axis should be in units of minutes.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY