Q₁: Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k-2.3 W/m °C, and surface area A= 20 m². The left side of the wall at x= 0 is subjected of T1 = 80°C. while the right side losses heated by convection to the surrounding air at T-15 °C with a heat transfer coefficient of h=24 W/m² °C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall Ans: (c) 6030 W

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q₁: Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k-2.3 W/m °C,
and surface area A= 20 m². The left side of the wall at x= 0 is subjected of T1 = 80°C. while
the right side losses heated by convection to the surrounding air at T-15 °C with a heat
transfer coefficient of h=24 W/m² °C. Assuming constant thermal conductivity and no heat
generation in the wall, (a) express the differential equation and the boundary conditions for
steady one-dimensional heat conduction through the wall, (b) obtain a relation for the
variation of temperature in the wall by solving the differential equation, and (c) evaluate the
rate of heat transfer through the wall
Ans: (c) 6030 W
Transcribed Image Text:Q₁: Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k-2.3 W/m °C, and surface area A= 20 m². The left side of the wall at x= 0 is subjected of T1 = 80°C. while the right side losses heated by convection to the surrounding air at T-15 °C with a heat transfer coefficient of h=24 W/m² °C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall Ans: (c) 6030 W
Expert Solution
steps

Step by step

Solved in 5 steps with 31 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY