Q = +10e In this worksheet, we'll explore a simple quantitative model for induced polarization of a diatomic molecule. Consider two ions with charges of te bound together as shown in the diagram. The binding force between the ions can be modeled as a Hook's law force (i.e. a spring, F = -kx) with spring constant k = 2 x 10-5 N/m. A third charge Q = +10e is brought a distance d = 100 nm from the molecule, pushing on the positive ion and pulling on the negative ion. 1. For what separation x between the ions will the attractive Hook's law force between them counteract the repulsive Coulomb's law force from the positive charge Q? (assume x << d) d x 00000 -e +e 2. If the ions are separated by the distance that you calculated in question 1, what is the net Coulomb's law force that the Q exerts on the molecule?
Q = +10e In this worksheet, we'll explore a simple quantitative model for induced polarization of a diatomic molecule. Consider two ions with charges of te bound together as shown in the diagram. The binding force between the ions can be modeled as a Hook's law force (i.e. a spring, F = -kx) with spring constant k = 2 x 10-5 N/m. A third charge Q = +10e is brought a distance d = 100 nm from the molecule, pushing on the positive ion and pulling on the negative ion. 1. For what separation x between the ions will the attractive Hook's law force between them counteract the repulsive Coulomb's law force from the positive charge Q? (assume x << d) d x 00000 -e +e 2. If the ions are separated by the distance that you calculated in question 1, what is the net Coulomb's law force that the Q exerts on the molecule?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question

Transcribed Image Text:= +10e
In this worksheet, we'll explore a simple quantitative model for induced polarization of a
diatomic molecule. Consider two ions with charges of te bound together as shown in the
diagram. The binding force between the ions can be modeled
as a Hook's law force (i.e. a spring, F = -kx) with spring
constant k = 2 x 10-5 N/m. A third charge Q = +10e is brought
a distance d = 100 nm from the molecule, pushing on the
positive ion and pulling on the negative ion.
1. For what separation x between the ions will the attractive Hook's law force between
them counteract the repulsive Coulomb's law force from the positive charge Q? (assume
x << d)
d
x
00000
+e
-e
2. If the ions are separated by the distance that you calculated in question 1, what is the
net Coulomb's law force that the Q exerts on the molecule?
Expert Solution

Step 1
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON