In Thomson’s model, an atom is a positively charged spherical material in which negatively charged electrons are embedded like chocolate chips on a ball of cookie dough. Consider such an atom, made up of a uniformly charged sphere with charge +e and radius R and a point charge with mass m and charge −e. a. Locate the position of electrostatic equilibrium for the electron inside the sphere. b. Assume further that the sphere has little or no resistance to the electron’s mo- tion. If the electron is displaced from equilibrium by a distance less than R, show that the resulting motion of the electron would be simple harmonic. c. If the electron was displaced from equilibrium by a distance greater than R, would the electron oscillate? Would its motion be simple harmonic?
In Thomson’s model, an atom is a positively charged spherical material in which negatively charged electrons are embedded like chocolate chips on a ball of cookie dough. Consider such an atom, made up of a uniformly charged sphere with charge +e and radius R and a point charge with mass m and charge −e.
a. Locate the position of electrostatic equilibrium for the electron inside the sphere.
b. Assume further that the sphere has little or no resistance to the electron’s mo- tion. If the electron is displaced from equilibrium by a distance less than R, show that the resulting motion of the electron would be simple harmonic.
c. If the electron was displaced from equilibrium by a distance greater than R, would the electron oscillate? Would its motion be simple harmonic?

Trending now
This is a popular solution!
Step by step
Solved in 2 steps
