puinas para The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 60, find the probability of a sample mean being less than 22.2 if μ = 22 and a=1.3. Click the icon to view page 1 of the standard normal table. Click the icon to view page 2 of the standard normal table. For a sample of n = 60, the probability of a sample mean being less than 22.2 if µ = 22 and a = 1.3 is (Round to four decimal places as needed.) Would the given sample mean be considered unusual? The sample mean be considered unusual because it has a probability that is than 5%.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
K
Z
0.0
0.1
0.2
The population mean and standard deviation are given below. Find the required probability and determine whether the
given sample mean would be considered unusual.
For a sample of n = 60, find the probability of a sample mean being less than 22.2 if μ = 22 and o=1.3.
0.3
0.4
Standard Normal Table (Page 2)
0.5
0.6
0.7
0.8
0.9
For a sample of n = 60, the probability of a sample mean being less than 22.2 if µ = 22 and o=1.3 is.
(Round to four decimal places as needed.)
Would the given sample mean be considered unusual?
The sample mean
Click the icon to view page 1 of the standard normal table.
Click the icon to view page 2 of the standard normal table.
Arca
0
z
.05
.02 .03 .04
5080 5120 5160
.00 .01
.5000 5040
5398 5438 5478 .5517 5557
.5793 5832
5199
5596
5987
5910
5948
5871
6255
6179 6217
6293
6331
.6368
.6554 6591 6628
.6664
6700
6736
6915 6950 6985
.7019
.7054
.7088 7123
.7157 7190
7224
.7357
7389 .7422 7454
7549
7257
7580 7611
7673
7852
.7881 7910 .7939
7967
.7486 .7517
.7794 .7823
.8078 8106 8133
8340 8365 8389
8577
8212 8238 8264
8159 8186
8413 8438
1.0
8599
1.1
1.2
1.3
1.4
.9535 .9545
.9495 9505 .9515 .9525
.9591 .9599 .9608 .9616
.9671 9678 .9686
.9625 .9633
9693
.9699
.9706
.9767
.7734 7764
8023 8051
8289 8315
8461 8485 8508 8531 8554
8621
8643 8665 8686 8708 .8729 .8749 8770
.8790 8810 8830
8849 8869 8888 8907 8925 8944 8962 8980 8997 .9015
9032 9049 .9066 .9082 .9099 9115 .9131 .9147 9162 .9177
9192 9207 .9222 .9236 9251 .9265 .9279 .9292 .9306
9319
1.5 9332 9345 .9357 .9370 .9382 .9394 .9406 .9418 9429 9441
1.6 .9452 9463 9474 .9484
1.7 .9554 9564 9573 .9582
1.8 .9641 9649 .9656 9664
1.9 .9713 .9719 9726 .9732
9738 .9744 .9750 9756
.9761
2.0 .9772 9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 9834
.9838 .9842 .9846 9850 .9854 .9857
2.2 .9861 9864 .9868 .9871
9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 9911 .9913 .9916
2.4 .9918 9920 .9922
9925 9927 .9929 9931 .9932 9934 9936
.9938 9940 .9941 .9943 9945 .9946 9948 .9949 .9951 9952
.9953 .9955 9956
.9957 .9959 9960 9961 .9962
2.7 .9965 .9966 9967
.9968
.9976 9977 .9977 9978 9979
.9982 9983 .9984 .9984 9985
.9987 .9987
9987 9988
.9988 .9989 9989
3.1 9990
9991
.9991 9991 .9992 .9992 9992 .9992
3.2 9993 .9993 .9994 9994 9994 .9994 .9994 .9995
3.3 9995 .9995 .9995 9996 .9996 .9996 .9996 .9996
3.4 9997
9997 .9997 .9997 .9997 .9997 .9997 .9997
.00 .01
2.5
2.6
.9963 9964
.9969 .9970 9971 .9972
.9973
9974
2.8 .9974 .9975
9980
9981
.9981 .9982
2.9
3.0
9979
.9985
.9989
Z
.02
.03
.04
.05
.06
.07
be considered unusual because it has a probability that is
7291 .7324
.7642
.06
.07
.08
5239 5279 5319
.5636 .5675 .5714
.6026 6064 6103
6406 6443 6480
6772 6808 6844
7704
.7995
.09
.5359
.5753
6141
6517
6879
.9986 .9986
.9990
.9990
9993
.9993
.9995
.9995
9996
.9997
9997 .9998
.08
.09
- X
than 5%.
Transcribed Image Text:K Z 0.0 0.1 0.2 The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 60, find the probability of a sample mean being less than 22.2 if μ = 22 and o=1.3. 0.3 0.4 Standard Normal Table (Page 2) 0.5 0.6 0.7 0.8 0.9 For a sample of n = 60, the probability of a sample mean being less than 22.2 if µ = 22 and o=1.3 is. (Round to four decimal places as needed.) Would the given sample mean be considered unusual? The sample mean Click the icon to view page 1 of the standard normal table. Click the icon to view page 2 of the standard normal table. Arca 0 z .05 .02 .03 .04 5080 5120 5160 .00 .01 .5000 5040 5398 5438 5478 .5517 5557 .5793 5832 5199 5596 5987 5910 5948 5871 6255 6179 6217 6293 6331 .6368 .6554 6591 6628 .6664 6700 6736 6915 6950 6985 .7019 .7054 .7088 7123 .7157 7190 7224 .7357 7389 .7422 7454 7549 7257 7580 7611 7673 7852 .7881 7910 .7939 7967 .7486 .7517 .7794 .7823 .8078 8106 8133 8340 8365 8389 8577 8212 8238 8264 8159 8186 8413 8438 1.0 8599 1.1 1.2 1.3 1.4 .9535 .9545 .9495 9505 .9515 .9525 .9591 .9599 .9608 .9616 .9671 9678 .9686 .9625 .9633 9693 .9699 .9706 .9767 .7734 7764 8023 8051 8289 8315 8461 8485 8508 8531 8554 8621 8643 8665 8686 8708 .8729 .8749 8770 .8790 8810 8830 8849 8869 8888 8907 8925 8944 8962 8980 8997 .9015 9032 9049 .9066 .9082 .9099 9115 .9131 .9147 9162 .9177 9192 9207 .9222 .9236 9251 .9265 .9279 .9292 .9306 9319 1.5 9332 9345 .9357 .9370 .9382 .9394 .9406 .9418 9429 9441 1.6 .9452 9463 9474 .9484 1.7 .9554 9564 9573 .9582 1.8 .9641 9649 .9656 9664 1.9 .9713 .9719 9726 .9732 9738 .9744 .9750 9756 .9761 2.0 .9772 9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817 2.1 .9821 .9826 .9830 9834 .9838 .9842 .9846 9850 .9854 .9857 2.2 .9861 9864 .9868 .9871 9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 9911 .9913 .9916 2.4 .9918 9920 .9922 9925 9927 .9929 9931 .9932 9934 9936 .9938 9940 .9941 .9943 9945 .9946 9948 .9949 .9951 9952 .9953 .9955 9956 .9957 .9959 9960 9961 .9962 2.7 .9965 .9966 9967 .9968 .9976 9977 .9977 9978 9979 .9982 9983 .9984 .9984 9985 .9987 .9987 9987 9988 .9988 .9989 9989 3.1 9990 9991 .9991 9991 .9992 .9992 9992 .9992 3.2 9993 .9993 .9994 9994 9994 .9994 .9994 .9995 3.3 9995 .9995 .9995 9996 .9996 .9996 .9996 .9996 3.4 9997 9997 .9997 .9997 .9997 .9997 .9997 .9997 .00 .01 2.5 2.6 .9963 9964 .9969 .9970 9971 .9972 .9973 9974 2.8 .9974 .9975 9980 9981 .9981 .9982 2.9 3.0 9979 .9985 .9989 Z .02 .03 .04 .05 .06 .07 be considered unusual because it has a probability that is 7291 .7324 .7642 .06 .07 .08 5239 5279 5319 .5636 .5675 .5714 .6026 6064 6103 6406 6443 6480 6772 6808 6844 7704 .7995 .09 .5359 .5753 6141 6517 6879 .9986 .9986 .9990 .9990 9993 .9993 .9995 .9995 9996 .9997 9997 .9998 .08 .09 - X than 5%.
K
The population mean and standard deviation are given below. Find the required probability and determine whether the
given sample mean would be considered unusual.
For a sample of n = 60, find the probability of a sample mean being less than 22.2 if µ = 22 and o=1.3.
Area
Click the icon to view page 1 of the standard normal table.
Click the icon to view page 2 of the standard normal table.
For a sample of n = 60, the probability of a sample mean being less than 22.2 if μ = 22 and o=1.3 is.
(Round to four decimal places as needed.)
Would the given sample mean be considered unusual?
Standard Normal Table (Page 1)
0
2
D
Z
.09
.08
.07
.03
.02
.01
.00
.06
-3.4 .0002 .0003 0003 .0003
.05 .04
.0003 0003
-3.3 .0003 0004 0004 .0004 0004 0004 0004
.0003 0003 .0003 0003
0005 .0005 0005
.0009 .0009 .0009
.0007
0010
0013
.0013 .0013
0035
0047
-3.2 .0005 .0005 .0005 .0006 0006 0006
-3.1 .0007 0007 .0008 .0008 .0008 0008
-3.0 .0010 .0010 0011 .0011 .0011 0012 .0012
-2.9 .0014 .0014 0015 .0015 .0016 .0016 .0017 .0018 .0018 0019
-2.8 .0019 .0020 0021 .0021 .0022 0023 .0023 .0024 .0025 0026
-2.7 .0026 .0027 0028 .0029 0030 0031 .0032 .0033 .0034
-2.6 .0036 0037 0038 .0039 0040 0041 .0043 0044 .0045
-2.5 .0048 0049 0051 .0052 0054 0055 .0057 .0059 .0060 0062
-2.4 .0064 .0066 .0068 .0069 .0071 0073 .0075 .0078 .0080 0082
-2.3 0084 .0087 0089 .0091 0094 0096 .0099 0102 0104 0107
-2.2 0110
0113 .0116 0119 0122 0125 .0129 0132 0136 0139
-2.1 0143 0146 0150 0154 0158
0162 .0166 0170 .0174 0179
-2.0 0183 0188 0192 0197
0202 0207 0212 0217 0222 0228
-1.9 0233 .0239 .0244
0250 0256
0262
.0268
.0274 .0281
-1.8 .0294 0301 0307 .0314 0322 0329 .0336 0344 .0351
0384 0392 0401 0409
.0475 0485 0495 0505
0582 .0594 .0606 0618
0708 0721
0287
0359
.0436
0446
-1.7 .0367 .0375
-1.6 .0455 .0465
-1.5 .0559 .0571
0427
0526 .0537
0548
.0643 .0655 .0668
.04 18
.0516
.06.30
0764 0778 .0793 0808
.0968
.1093 1112 .1131 1151
0735 0749
-1.4 .0681 0694
-1.3
-1.2
0869
0885
.0823 .0838 0853
.0985 .1003 .1020 .1038
.1056
1170 .1190
1210 .1230
.1251
.1075
1271
.1469 .1492
.1711 .1736
.1379 .1401 .1423 .1446
-1.1
.1292 .1314 .1335 1357
-1.0
.1515 .1539 .1562 1587
-0.9 .1611 .1635 .1660 .1685
.1762 .1788 .1814 .1841
-0.8 .1867 .1894 .1922 .1949 .1977 2005 2033 2061 2090 2119
-0.7 2148 2177
2206 .2236 2266 2296 2327 2358 2389 2420
-0.6 2451 2483 2514 2546 2578 2611 .2643 2676 .2709 2743
-0.5 2776 2810 2843 .2877 2912 2946 .2981
-0.4 3121 .3156 3192 3228 3264 3300 3336
-0.3 .3483 3520
3557
.3594 3632 3669
.3707
-0.2 3859 3897 .3936 .3974 4013 4052 4090
-0.1
4364 4404 4443
-0.0
4761
Z
.06
3085
3446
3821
4207
4483 4522 4562 4602
4920 4960 5000
.01
3015 .3050
.3372 .3409
3745 3783
4129 4168
4247 4286 4325
4641 4681 4721
.07
4801 4840 4880
.05 .04
.03
.09
.08
.02
.00
Print
.0006 0006 .0007
0901 .0918 0934 .0951
Done
- X than 5%.
Transcribed Image Text:K The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 60, find the probability of a sample mean being less than 22.2 if µ = 22 and o=1.3. Area Click the icon to view page 1 of the standard normal table. Click the icon to view page 2 of the standard normal table. For a sample of n = 60, the probability of a sample mean being less than 22.2 if μ = 22 and o=1.3 is. (Round to four decimal places as needed.) Would the given sample mean be considered unusual? Standard Normal Table (Page 1) 0 2 D Z .09 .08 .07 .03 .02 .01 .00 .06 -3.4 .0002 .0003 0003 .0003 .05 .04 .0003 0003 -3.3 .0003 0004 0004 .0004 0004 0004 0004 .0003 0003 .0003 0003 0005 .0005 0005 .0009 .0009 .0009 .0007 0010 0013 .0013 .0013 0035 0047 -3.2 .0005 .0005 .0005 .0006 0006 0006 -3.1 .0007 0007 .0008 .0008 .0008 0008 -3.0 .0010 .0010 0011 .0011 .0011 0012 .0012 -2.9 .0014 .0014 0015 .0015 .0016 .0016 .0017 .0018 .0018 0019 -2.8 .0019 .0020 0021 .0021 .0022 0023 .0023 .0024 .0025 0026 -2.7 .0026 .0027 0028 .0029 0030 0031 .0032 .0033 .0034 -2.6 .0036 0037 0038 .0039 0040 0041 .0043 0044 .0045 -2.5 .0048 0049 0051 .0052 0054 0055 .0057 .0059 .0060 0062 -2.4 .0064 .0066 .0068 .0069 .0071 0073 .0075 .0078 .0080 0082 -2.3 0084 .0087 0089 .0091 0094 0096 .0099 0102 0104 0107 -2.2 0110 0113 .0116 0119 0122 0125 .0129 0132 0136 0139 -2.1 0143 0146 0150 0154 0158 0162 .0166 0170 .0174 0179 -2.0 0183 0188 0192 0197 0202 0207 0212 0217 0222 0228 -1.9 0233 .0239 .0244 0250 0256 0262 .0268 .0274 .0281 -1.8 .0294 0301 0307 .0314 0322 0329 .0336 0344 .0351 0384 0392 0401 0409 .0475 0485 0495 0505 0582 .0594 .0606 0618 0708 0721 0287 0359 .0436 0446 -1.7 .0367 .0375 -1.6 .0455 .0465 -1.5 .0559 .0571 0427 0526 .0537 0548 .0643 .0655 .0668 .04 18 .0516 .06.30 0764 0778 .0793 0808 .0968 .1093 1112 .1131 1151 0735 0749 -1.4 .0681 0694 -1.3 -1.2 0869 0885 .0823 .0838 0853 .0985 .1003 .1020 .1038 .1056 1170 .1190 1210 .1230 .1251 .1075 1271 .1469 .1492 .1711 .1736 .1379 .1401 .1423 .1446 -1.1 .1292 .1314 .1335 1357 -1.0 .1515 .1539 .1562 1587 -0.9 .1611 .1635 .1660 .1685 .1762 .1788 .1814 .1841 -0.8 .1867 .1894 .1922 .1949 .1977 2005 2033 2061 2090 2119 -0.7 2148 2177 2206 .2236 2266 2296 2327 2358 2389 2420 -0.6 2451 2483 2514 2546 2578 2611 .2643 2676 .2709 2743 -0.5 2776 2810 2843 .2877 2912 2946 .2981 -0.4 3121 .3156 3192 3228 3264 3300 3336 -0.3 .3483 3520 3557 .3594 3632 3669 .3707 -0.2 3859 3897 .3936 .3974 4013 4052 4090 -0.1 4364 4404 4443 -0.0 4761 Z .06 3085 3446 3821 4207 4483 4522 4562 4602 4920 4960 5000 .01 3015 .3050 .3372 .3409 3745 3783 4129 4168 4247 4286 4325 4641 4681 4721 .07 4801 4840 4880 .05 .04 .03 .09 .08 .02 .00 Print .0006 0006 .0007 0901 .0918 0934 .0951 Done - X than 5%.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman