Prove the identity. tan(x +) V3 + tan(x) 1-V3 tan(x) tan(x) + tan= tan(x + ) V3 + tan(x) 1- V3 tan(x)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Could you please write the answers clearly and understandably? Thank you.
Prove the identity.

\[
\tan\left(x + \frac{\pi}{3}\right) = \frac{\sqrt{3} + \tan(x)}{1 - \sqrt{3} \tan(x)}
\]

\[
\tan\left(x + \frac{\pi}{3}\right) = \frac{\tan(x) + \tan\left(\frac{\pi}{3}\right)}{1 - \left( \text{[blank box]} \right)}
\]

\[
= \frac{\sqrt{3} + \tan(x)}{1 - \sqrt{3} \tan(x)}
\]

Note: In the second equation, there is a blank box usually used to fill the expression \( \tan(x) \cdot \tan\left(\frac{\pi}{3}\right) \).
Transcribed Image Text:Prove the identity. \[ \tan\left(x + \frac{\pi}{3}\right) = \frac{\sqrt{3} + \tan(x)}{1 - \sqrt{3} \tan(x)} \] \[ \tan\left(x + \frac{\pi}{3}\right) = \frac{\tan(x) + \tan\left(\frac{\pi}{3}\right)}{1 - \left( \text{[blank box]} \right)} \] \[ = \frac{\sqrt{3} + \tan(x)}{1 - \sqrt{3} \tan(x)} \] Note: In the second equation, there is a blank box usually used to fill the expression \( \tan(x) \cdot \tan\left(\frac{\pi}{3}\right) \).
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning