Prove the identity. sin(x - ) - -cos(*) Use the Subtraction Formula for Sine, and then simplify. sin os(x) (sno)(0) - (conto)(| sin(x) cos(x)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Prove the identity.**

\[
\sin\left(x - \frac{\pi}{2}\right) = -\cos(x)
\]

**Use the Subtraction Formula for Sine, and then simplify:**

\[
\sin\left(x - \frac{\pi}{2}\right) = \left(\sin(x)\right)\left(\cos\left(\frac{\pi}{2}\right)\right) - \left(\cos(x)\right)\left( \right)
\]

\[
= \left(\sin(x)\right)(0) - \left(\cos(x)\right)\left( \right)
\]

\[
= \boxed{}
\]

In the above derivation, each step involves filling in the blanks to complete the identity using trigonometric properties.
Transcribed Image Text:**Prove the identity.** \[ \sin\left(x - \frac{\pi}{2}\right) = -\cos(x) \] **Use the Subtraction Formula for Sine, and then simplify:** \[ \sin\left(x - \frac{\pi}{2}\right) = \left(\sin(x)\right)\left(\cos\left(\frac{\pi}{2}\right)\right) - \left(\cos(x)\right)\left( \right) \] \[ = \left(\sin(x)\right)(0) - \left(\cos(x)\right)\left( \right) \] \[ = \boxed{} \] In the above derivation, each step involves filling in the blanks to complete the identity using trigonometric properties.
Expert Solution
Step 1

Given that,

sinx - π2=-cosx

We have to prove this identity.

We know that,

The substraction formula is,

sin(A - B) = sinA cosB - cosA sinB

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning