Verify the identity by converting the left side into sines and cosines. (Simplify at each step.) cot(x) =tan(x) = sec(x)(csc(x) - 2 sin(x)) cos(x) _ _sin(x) sin(x) cos(x) cos²(x) — sin²(x) cot(x) - tan(x) = = 11 = = sin(x) cos(x) − (sin²(x) + sin²(x)) cos(x) 1 - 2 sin²(x) 1 cos(x) X 1 - 2 sin²(x) 2 sin²(x) 1 1 cos(x) sin(x) sec(x) (csc(x) — 2 sin(x)) X
Verify the identity by converting the left side into sines and cosines. (Simplify at each step.) cot(x) =tan(x) = sec(x)(csc(x) - 2 sin(x)) cos(x) _ _sin(x) sin(x) cos(x) cos²(x) — sin²(x) cot(x) - tan(x) = = 11 = = sin(x) cos(x) − (sin²(x) + sin²(x)) cos(x) 1 - 2 sin²(x) 1 cos(x) X 1 - 2 sin²(x) 2 sin²(x) 1 1 cos(x) sin(x) sec(x) (csc(x) — 2 sin(x)) X
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
100%
![**Trigonometric Identity Verification**
**Objective:**
Verify the identity by converting the left side into sines and cosines. (Simplify at each step.)
**Given Identity:**
\[ \cot(x) - \tan(x) = \sec(x)(\csc(x) - 2 \sin(x)) \]
### Step-by-Step Verification:
1. **Express \(\cot(x)\) and \(\tan(x)\) in terms of sine and cosine:**
\[\cot(x) - \tan(x) = \frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}\]
2. **Find a common denominator:**
\[ \frac{\cos^2(x) - \sin^2(x)}{\sin(x)\cos(x)} \]
3. **Simplify using the Pythagorean identity \(\cos^2(x) + \sin^2(x) = 1\):**
\[ \cos^2(x) - \sin^2(x) = \cos(x) (\cos(x)) - \sin^2(x) \]
Substitution leads to:
\[ = \sin(x) \left( \cos(x) \right) \]
\[ = \frac{1 - (\sin^2(x) + \sin^2(x))}{\sin(x) \cos(x)} \]
This simplifies to:
\[ \frac{1 - 2\sin^2(x)}{\sin(x) \cos(x)} \]
4. **Separate the expression into:**
\[ \frac{1}{\cos(x)} \cdot \frac{1 - 2 \sin^2(x)}{\sin(x)} \]
5. **Break it down further:**
\[ \sec(x) \left( \frac{1 - 2\sin^2(x)}{\sin(x)} \right) \]
6. **Notice the resemblance to the given identity:**
\[ \sec(x) \left( \csc(x) - 2 \sin(x) \right) \]
### Verification Complete:
\[
\cot(x) - \tan(x) = \sec(x) \left( \csc(x) - 2 \sin(x) \right)
\]
### Explanation of Incorrect Steps:
- In](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa0e38307-1ade-44bc-b712-aaeda4c58098%2Fd8e72f42-34fc-43e2-91aa-36134763250f%2Fwp1zwg_processed.png&w=3840&q=75)
Transcribed Image Text:**Trigonometric Identity Verification**
**Objective:**
Verify the identity by converting the left side into sines and cosines. (Simplify at each step.)
**Given Identity:**
\[ \cot(x) - \tan(x) = \sec(x)(\csc(x) - 2 \sin(x)) \]
### Step-by-Step Verification:
1. **Express \(\cot(x)\) and \(\tan(x)\) in terms of sine and cosine:**
\[\cot(x) - \tan(x) = \frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}\]
2. **Find a common denominator:**
\[ \frac{\cos^2(x) - \sin^2(x)}{\sin(x)\cos(x)} \]
3. **Simplify using the Pythagorean identity \(\cos^2(x) + \sin^2(x) = 1\):**
\[ \cos^2(x) - \sin^2(x) = \cos(x) (\cos(x)) - \sin^2(x) \]
Substitution leads to:
\[ = \sin(x) \left( \cos(x) \right) \]
\[ = \frac{1 - (\sin^2(x) + \sin^2(x))}{\sin(x) \cos(x)} \]
This simplifies to:
\[ \frac{1 - 2\sin^2(x)}{\sin(x) \cos(x)} \]
4. **Separate the expression into:**
\[ \frac{1}{\cos(x)} \cdot \frac{1 - 2 \sin^2(x)}{\sin(x)} \]
5. **Break it down further:**
\[ \sec(x) \left( \frac{1 - 2\sin^2(x)}{\sin(x)} \right) \]
6. **Notice the resemblance to the given identity:**
\[ \sec(x) \left( \csc(x) - 2 \sin(x) \right) \]
### Verification Complete:
\[
\cot(x) - \tan(x) = \sec(x) \left( \csc(x) - 2 \sin(x) \right)
\]
### Explanation of Incorrect Steps:
- In
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning