Prove 2 {y } = 5 2 {y} -y (o) the U definition of Laplace integral definition using transform: 2 {F 4)} = So°F (+) e ² st dt -Need Integration by parts
Prove 2 {y } = 5 2 {y} -y (o) the U definition of Laplace integral definition using transform: 2 {F 4)} = So°F (+) e ² st dt -Need Integration by parts
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I started the problem but I am not sure if my math is right or if I am even on the right track.
![Prove 2 {y }=$ 2{y} -y (o)
Using the integral definition of Laplace
transform: 2 {F (+)} = 50°F (t) e-st dt
-Need Integration by parts
St
L {y} = So y'e="dt dy vm-est
St
v=y' duže st
duży
t
y' l-est 116 - Sery de
y' (=-=-^"^) | ² +
yek
est
#tydt
L {y}
9 / ²115 + 152 {y}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc77f544a-ee3e-4902-8958-66e53c68e4a2%2F8cd773dc-55ba-4453-92a7-ecfbbee95cce%2Fxgljim_processed.png&w=3840&q=75)
Transcribed Image Text:Prove 2 {y }=$ 2{y} -y (o)
Using the integral definition of Laplace
transform: 2 {F (+)} = 50°F (t) e-st dt
-Need Integration by parts
St
L {y} = So y'e="dt dy vm-est
St
v=y' duže st
duży
t
y' l-est 116 - Sery de
y' (=-=-^"^) | ² +
yek
est
#tydt
L {y}
9 / ²115 + 152 {y}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)