Prove 2 {y } = 5 2 {y} -y (o) the U definition of Laplace integral definition using transform: 2 {F 4)} = So°F (+) e ² st dt -Need Integration by parts

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I started the problem but I am not sure if my math is right or if I am even on the right track.

Prove 2 {y }=$ 2{y} -y (o)
Using the integral definition of Laplace
transform: 2 {F (+)} = 50°F (t) e-st dt
-Need Integration by parts
St
L {y} = So y'e="dt dy vm-est
St
v=y' duže st
duży
t
y' l-est 116 - Sery de
y' (=-=-^"^) | ² +
yek
est
#tydt
L {y}
9 / ²115 + 152 {y}
Transcribed Image Text:Prove 2 {y }=$ 2{y} -y (o) Using the integral definition of Laplace transform: 2 {F (+)} = 50°F (t) e-st dt -Need Integration by parts St L {y} = So y'e="dt dy vm-est St v=y' duže st duży t y' l-est 116 - Sery de y' (=-=-^"^) | ² + yek est #tydt L {y} 9 / ²115 + 152 {y}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,