Proposition: If m is an odd integer, then m + 6 is an odd integer. Proof: For m + 6 to be an odd integer, there must exist an integer n such that m+6=2n+1. Subtracting 6 from both sides, we see that m = 2n+1-6 = = 2n― 6+1 = 2(n − 3) + 1. Since the integers are closed under subtraction, then n-3 € Z. Hence, the last equation implies that m = = 2q+1 where q = n = 3. This proves - that if m is an odd integer, then m + 6 is an odd integer. Based upon the Reading assignment and the Elements of Style >>, which of the following is the most significant error in the proof? The proof does not use complete sentences The proof contains a sentence that begins with a mathematical symbol The proof uses cumbersome notation The proof contains a variable used for more than one object The proof is written backwards The proof uses an example to prove the general case

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter1: Fundamental Concepts Of Algebra
Section1.1: Real Numbers
Problem 39E
icon
Related questions
Question
Proposition: If m is an odd integer, then m + 6 is
an odd integer.
Proof: For m + 6 to be an odd integer, there must
exist an integer n such that
m+6=2n+1.
Subtracting 6 from both sides, we see that
m = 2n+1-6
=
= 2n― 6+1
= 2(n − 3) + 1.
Since the integers are closed under subtraction,
then n-3 € Z. Hence, the last equation implies
that m = = 2q+1 where q = n = 3. This proves
-
that if m is an odd integer, then m + 6 is an odd
integer.
Based upon the Reading assignment and the Elements of Style >>, which of the
following is the most significant error in the proof?
The proof does not use complete sentences
The proof contains a sentence that begins with a mathematical symbol
The proof uses cumbersome notation
The proof contains a variable used for more than one object
The proof is written backwards
The proof uses an example to prove the general case
Transcribed Image Text:Proposition: If m is an odd integer, then m + 6 is an odd integer. Proof: For m + 6 to be an odd integer, there must exist an integer n such that m+6=2n+1. Subtracting 6 from both sides, we see that m = 2n+1-6 = = 2n― 6+1 = 2(n − 3) + 1. Since the integers are closed under subtraction, then n-3 € Z. Hence, the last equation implies that m = = 2q+1 where q = n = 3. This proves - that if m is an odd integer, then m + 6 is an odd integer. Based upon the Reading assignment and the Elements of Style >>, which of the following is the most significant error in the proof? The proof does not use complete sentences The proof contains a sentence that begins with a mathematical symbol The proof uses cumbersome notation The proof contains a variable used for more than one object The proof is written backwards The proof uses an example to prove the general case
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Elements Of Modern Algebra
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt