Proposition: If m is an odd integer, then m + 6 is an odd integer. Proof: For m + 6 to be an odd integer, there must exist an integer n such that m+6=2n+1. Subtracting 6 from both sides, we see that m = 2n+1-6 = = 2n― 6+1 = 2(n − 3) + 1. Since the integers are closed under subtraction, then n-3 € Z. Hence, the last equation implies that m = = 2q+1 where q = n = 3. This proves - that if m is an odd integer, then m + 6 is an odd integer. Based upon the Reading assignment and the Elements of Style >>, which of the following is the most significant error in the proof? The proof does not use complete sentences The proof contains a sentence that begins with a mathematical symbol The proof uses cumbersome notation The proof contains a variable used for more than one object The proof is written backwards The proof uses an example to prove the general case
Proposition: If m is an odd integer, then m + 6 is an odd integer. Proof: For m + 6 to be an odd integer, there must exist an integer n such that m+6=2n+1. Subtracting 6 from both sides, we see that m = 2n+1-6 = = 2n― 6+1 = 2(n − 3) + 1. Since the integers are closed under subtraction, then n-3 € Z. Hence, the last equation implies that m = = 2q+1 where q = n = 3. This proves - that if m is an odd integer, then m + 6 is an odd integer. Based upon the Reading assignment and the Elements of Style >>, which of the following is the most significant error in the proof? The proof does not use complete sentences The proof contains a sentence that begins with a mathematical symbol The proof uses cumbersome notation The proof contains a variable used for more than one object The proof is written backwards The proof uses an example to prove the general case
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter1: Fundamental Concepts Of Algebra
Section1.1: Real Numbers
Problem 39E
Related questions
Question

Transcribed Image Text:Proposition: If m is an odd integer, then m + 6 is
an odd integer.
Proof: For m + 6 to be an odd integer, there must
exist an integer n such that
m+6=2n+1.
Subtracting 6 from both sides, we see that
m = 2n+1-6
=
= 2n― 6+1
= 2(n − 3) + 1.
Since the integers are closed under subtraction,
then n-3 € Z. Hence, the last equation implies
that m = = 2q+1 where q = n = 3. This proves
-
that if m is an odd integer, then m + 6 is an odd
integer.
Based upon the Reading assignment and the Elements of Style >>, which of the
following is the most significant error in the proof?
The proof does not use complete sentences
The proof contains a sentence that begins with a mathematical symbol
The proof uses cumbersome notation
The proof contains a variable used for more than one object
The proof is written backwards
The proof uses an example to prove the general case
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning

Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt