Problem Given that the graph of f(x) passes through the point (0, -3) and that the slope of its tangent line at (x, f(x)) is 10e5x - 30x + 2, find f (x).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
It is integral formulas related problem
**Problem**

Given that the graph of \( f(x) \) passes through the point \( (0, -3) \) and that the slope of its tangent line at \( (x, f(x)) \) is \( 10e^{5x} - 30x + 2 \), find \( f(x) \).
Transcribed Image Text:**Problem** Given that the graph of \( f(x) \) passes through the point \( (0, -3) \) and that the slope of its tangent line at \( (x, f(x)) \) is \( 10e^{5x} - 30x + 2 \), find \( f(x) \).
# Integral Formulas

## Formula

1. \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)\)
2. \(\int k \, dx = kx + C\)
3. \(\int x^{-1} \, dx = \ln |x| + C\)
4. \(\int e^x \, dx = e^x + C\)
5. \(\int e^{ax} \, dx = \frac{e^{ax}}{a} + C\)
6. \(\int b^x \, dx = \frac{b^x}{\ln b} + C\)

## Example

1. \(\int x^5 \, dx = \frac{x^6}{6} + C\)
2. \(\int 7 \, dx = 7x + C\)
3. \(\int \frac{1}{x} \, dx = \ln |x| + C\)
4. \(\int e^x \, dx = e^x + C\)
5. \(\int e^{3x} \, dx = \frac{e^{3x}}{3} + C\)
6. \(\int 2^x \, dx = \frac{2^x}{\ln 2} + C\)

## Trig Integrals

1. \(\int \sin x \, dx = -\cos x + C\)
2. \(\int \cos x \, dx = \sin x + C\)

## Inverse Trig Integrals

1. \(\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C\)
2. \(\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C\)

## Additional Examples

1. \(\int \sec^2 x \, dx = \tan x + C\)
2. \(\int \sec x \tan x \, dx = \sec x + C\)
3. \(\int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1}\left(\
Transcribed Image Text:# Integral Formulas ## Formula 1. \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)\) 2. \(\int k \, dx = kx + C\) 3. \(\int x^{-1} \, dx = \ln |x| + C\) 4. \(\int e^x \, dx = e^x + C\) 5. \(\int e^{ax} \, dx = \frac{e^{ax}}{a} + C\) 6. \(\int b^x \, dx = \frac{b^x}{\ln b} + C\) ## Example 1. \(\int x^5 \, dx = \frac{x^6}{6} + C\) 2. \(\int 7 \, dx = 7x + C\) 3. \(\int \frac{1}{x} \, dx = \ln |x| + C\) 4. \(\int e^x \, dx = e^x + C\) 5. \(\int e^{3x} \, dx = \frac{e^{3x}}{3} + C\) 6. \(\int 2^x \, dx = \frac{2^x}{\ln 2} + C\) ## Trig Integrals 1. \(\int \sin x \, dx = -\cos x + C\) 2. \(\int \cos x \, dx = \sin x + C\) ## Inverse Trig Integrals 1. \(\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C\) 2. \(\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C\) ## Additional Examples 1. \(\int \sec^2 x \, dx = \tan x + C\) 2. \(\int \sec x \tan x \, dx = \sec x + C\) 3. \(\int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1}\left(\
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning