11. The derivative of cos 3x² is: a. -6x sin 3x² cos 3x² b. - sin 3x² c. -6x cos 3x² d. -6x sin 3x² 12. The integral of e-6* is: a. e-6x b. -6e-6x C. -e-6x d. =-e-6x 13. If lim an = 0 for the series S = a₁ + a₂ ++an +, then the series will always 11400

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer questions 11-13 (see attached document)

11. The derivative of cos 3x² is:
a. -6x sin 3x² cos 3x²
b.
- sin 3x²
c.
-6x cos 3x²
d. -6x sin 3x²
12. The integral of e-6* is:
a. e-6x
b. -6e-6x
c. -e-6x
d. --e-6x
13. If lim a, 0 for the series S = a₁ + a₂ + ... +an + ...,
11-00
converge.
a. True
b. False
then the series will always
Transcribed Image Text:11. The derivative of cos 3x² is: a. -6x sin 3x² cos 3x² b. - sin 3x² c. -6x cos 3x² d. -6x sin 3x² 12. The integral of e-6* is: a. e-6x b. -6e-6x c. -e-6x d. --e-6x 13. If lim a, 0 for the series S = a₁ + a₂ + ... +an + ..., 11-00 converge. a. True b. False then the series will always
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,