Problem An electric charge Q is distributed uniformly along a thick and enormously long conducting wire with radius R and length L. Using Gauss's law, what is the electric field at distance r perpendicular to the wire? (Consider the cases inside and outside the wire) Solution To find the electric field inside at r distance from the wire we will use the Gauss's law which is expressed as We will choose a symmetric Gaussian surface, which is the surface a cylinder excluding its ends, then evaluate the dot product to obtain A = (Equation 1) Case 1: Inside the wire Since, r falls inside the wire, then all the enclosed charge must be: denc = On the other hand, the Gaussian surface inside the wire is given by A= Using Equation 1, the electric field in simplified form is E = Case 2: Outside the wire Since, r falls outside the wire, then, all the charge must be enclosed, thus denc= On the other hand, the Gaussian surface outside the wire is given by Using Equation 1, the electric field in simplified form is
Problem An electric charge Q is distributed uniformly along a thick and enormously long conducting wire with radius R and length L. Using Gauss's law, what is the electric field at distance r perpendicular to the wire? (Consider the cases inside and outside the wire) Solution To find the electric field inside at r distance from the wire we will use the Gauss's law which is expressed as We will choose a symmetric Gaussian surface, which is the surface a cylinder excluding its ends, then evaluate the dot product to obtain A = (Equation 1) Case 1: Inside the wire Since, r falls inside the wire, then all the enclosed charge must be: denc = On the other hand, the Gaussian surface inside the wire is given by A= Using Equation 1, the electric field in simplified form is E = Case 2: Outside the wire Since, r falls outside the wire, then, all the charge must be enclosed, thus denc= On the other hand, the Gaussian surface outside the wire is given by Using Equation 1, the electric field in simplified form is
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Indicate please the answer to the boxes
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON