Problem 7.4.8. Suppose (sn) is a sequence of positive numbers such that Sn+1 lim = L. Sn (a) Prove that if L < 1, then limn0 Sn = 0. Hint. Choose R with L < R< 1. By the previous problem, 3 N such that if n > N, then Sn+l < R. Let no > N be Sn fixed and show sno+k < R*sn. Conclude that lim00 Sno+k no' O and let n = no + k. (b) Let c be a positive real number. Prove cn lim = 0. n!
Problem 7.4.8. Suppose (sn) is a sequence of positive numbers such that Sn+1 lim = L. Sn (a) Prove that if L < 1, then limn0 Sn = 0. Hint. Choose R with L < R< 1. By the previous problem, 3 N such that if n > N, then Sn+l < R. Let no > N be Sn fixed and show sno+k < R*sn. Conclude that lim00 Sno+k no' O and let n = no + k. (b) Let c be a positive real number. Prove cn lim = 0. n!
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![Problem 7.4.8. Suppose (sn) is a
sequence of positive numbers such that
(*)-
Sn+1
lim
= L.
Sn
(a) Prove that if L < 1, then
limn00 Sn
= 0.
Hint. Choose R with L < R < 1. By the
previous problem, 3N such that if
n > N, then Sn+1
< R. Let no > N be
Sn
fixed and show Sno+k < R*s ng. Conclude
that lim-0 s no+k = 0 and let
n = no + k.
(b) Let c be a positive real number. Prove
cn
lim
0.
%3D
п!](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0335de1d-d88b-4764-a43c-e2195c6bbbda%2Ffb9c3daf-4623-42bb-baca-5fa655a09194%2Fr9otx2n_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Problem 7.4.8. Suppose (sn) is a
sequence of positive numbers such that
(*)-
Sn+1
lim
= L.
Sn
(a) Prove that if L < 1, then
limn00 Sn
= 0.
Hint. Choose R with L < R < 1. By the
previous problem, 3N such that if
n > N, then Sn+1
< R. Let no > N be
Sn
fixed and show Sno+k < R*s ng. Conclude
that lim-0 s no+k = 0 and let
n = no + k.
(b) Let c be a positive real number. Prove
cn
lim
0.
%3D
п!
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)