16 Use Theorems 9.9 and 9.10 or Exercises 9.9-9.15 to prove the following: (a) lim nª+8n n² +9 (b) lim[+(-1)"] = +∞ (c) lim[32 321=+m = +∞
16 Use Theorems 9.9 and 9.10 or Exercises 9.9-9.15 to prove the following: (a) lim nª+8n n² +9 (b) lim[+(-1)"] = +∞ (c) lim[32 321=+m = +∞
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
THEOREM 9.10 For a sequence (sn) of positive real numbers, we have lim sn = +∞ if and only if lim(1/sn ) = 0.
THEOREM 9.9
Let (sn) and (tn) be sequences such that lim sn = +∞ and lim tn > 0 [lim tn can be finite or +∞]. Then lim sntn = +∞.
![9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9-9.15 to prove the following:
(a) lim n¹+8n
n²+9
= +∞
(b) lim[2/2 + (−1)″] = +∞
3
(c) lim[³
= +m](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F833bf7b1-3e6b-4749-8e88-54090320a3f5%2F0dd4ad37-0ffd-4ba3-ab56-251972211788%2F3wx533k_processed.png&w=3840&q=75)
Transcribed Image Text:9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9-9.15 to prove the following:
(a) lim n¹+8n
n²+9
= +∞
(b) lim[2/2 + (−1)″] = +∞
3
(c) lim[³
= +m
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)