Prove the lim(Sn) = -∞ case.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Prove the lim(Sn) = -∞ case.
![10.7 Theorem.
Let (sn) be a sequence in R.
(i) If lim s, is defined [as a real number, +o or -0o), then
lim inf s, = lim s, = lim sup s,.
(ii) If liminf s, = limsup sn, then lim s, is defined and lim s, =
lim inf s, = limsup s,.
Proof
We use the notation un = inf{sn : n > N}, vN = sup{sn : n > N},
u = lim un = liminf s, and v = lim vN = lim sup s,.
(i) Suppose lim sn = +oo. Let M be a positive real number. Then
there is a positive integer N so that
n > N implies Sn > M.
Then uy = inf{s, :n > N} 2 M. It follows that m > N
implies um 2 M. In other words, the sequence (uN) satisfies
the condition defining lim uy = +o, i.e., lim inf sn = +o.
Likewise limsup sn = +0.
The case lim s, = -00 is handled in a similar manner.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fac744b86-fb77-4dc8-9b17-1f74c21e67b7%2F17577726-214c-4dd7-acaf-bb36f613e032%2Fskyrb7_processed.png&w=3840&q=75)
Transcribed Image Text:10.7 Theorem.
Let (sn) be a sequence in R.
(i) If lim s, is defined [as a real number, +o or -0o), then
lim inf s, = lim s, = lim sup s,.
(ii) If liminf s, = limsup sn, then lim s, is defined and lim s, =
lim inf s, = limsup s,.
Proof
We use the notation un = inf{sn : n > N}, vN = sup{sn : n > N},
u = lim un = liminf s, and v = lim vN = lim sup s,.
(i) Suppose lim sn = +oo. Let M be a positive real number. Then
there is a positive integer N so that
n > N implies Sn > M.
Then uy = inf{s, :n > N} 2 M. It follows that m > N
implies um 2 M. In other words, the sequence (uN) satisfies
the condition defining lim uy = +o, i.e., lim inf sn = +o.
Likewise limsup sn = +0.
The case lim s, = -00 is handled in a similar manner.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)