Problem #6: Let Problem #6(a): A = 0 (A) 1 1 (a) Find a matrix P that diagonalizes A. (b) Find P-¹AP [using your answer from (a)]. Problem #6(b): 8 0 10 9 0 9 1 0 8 1 0 10 (G) 0 1 0 00 1 Select 10 (A) 0 0 19 (F) 0 00 [1 0 8 1 0 (B) 1 1 0 1 1 0 0 -1 Select 0 0 9 0 0 9 0 0 9 0 0 0 10 1 (H) 1 0 010 8 0 (B) 0 10 8 (G) 0 0 060 8 0 1 9 ooo 0 0 10 0 0 1 0 1 (C) 1 -10] 0 9 (C) 900,00 0 10 0 1 -1 8 COO 0 0 9 0 (H) 0 9 0 8 0 0 0 (D) 1 (D) 1 ܘ ܘ ܘ 1 0 (E) 0 10 0 0 0 9 1 1 0 1 0 -8 10 0 0 8 0 9 1 0 0 1 1 10 0 1 (F) 0 0 (E) 0 10 0 0 0 8:] ܘ ܘ 0 8 1 0 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Problem #6: Let
Problem #6(a):
8
A = 0 9
0
(A) 1
1
(a) Find a matrix P that diagonalizes A.
(b) Find P-¹AP [using your answer from (a)].
1
(G) 0
1 0 8
1
0
1 1
Problem #6(b):
0 10
0
0 9
0 10
1
0
0 0
1
Select v
10 0
(A) 0 9
0 0 9
9 0 0
(F) 0 9 0
0 0 10
Select
1 0 8
(B) 1 1
0
0
8
0 (B) 0
0
1
(H) 1
0
(G) 0
0 -1
1
0 (C) 1
0 8
1 0
0 1
0
10
0
8 0
9
0 0
0
0
10
-10
0
9
0
10
1
0
1 -1
9 0
(C) 0 9
0
0
8
(H) 0
'80
8
0
0
9 0
0 0 9
1
0
(D) 1 1
1
0
9
106
(E) 0
0
10
0 -8
(D) 0 10 0
0 0
8
1 0
1
1 1
(E)
9
1
0 (F) 0
0
10
0
0
0
10
0
800
0
8
1
0
0 1
Transcribed Image Text:Problem #6: Let Problem #6(a): 8 A = 0 9 0 (A) 1 1 (a) Find a matrix P that diagonalizes A. (b) Find P-¹AP [using your answer from (a)]. 1 (G) 0 1 0 8 1 0 1 1 Problem #6(b): 0 10 0 0 9 0 10 1 0 0 0 1 Select v 10 0 (A) 0 9 0 0 9 9 0 0 (F) 0 9 0 0 0 10 Select 1 0 8 (B) 1 1 0 0 8 0 (B) 0 0 1 (H) 1 0 (G) 0 0 -1 1 0 (C) 1 0 8 1 0 0 1 0 10 0 8 0 9 0 0 0 0 10 -10 0 9 0 10 1 0 1 -1 9 0 (C) 0 9 0 0 8 (H) 0 '80 8 0 0 9 0 0 0 9 1 0 (D) 1 1 1 0 9 106 (E) 0 0 10 0 -8 (D) 0 10 0 0 0 8 1 0 1 1 1 (E) 9 1 0 (F) 0 0 10 0 0 0 10 0 800 0 8 1 0 0 1
Expert Solution
Step 1: We give definition of diagonalization of a matrix.

(.) Given matrix is,

             A space equals space open square brackets table row 8 0 10 row 0 9 0 row 0 0 9 end table close square brackets

(.) Diagonalization : A square matrix apostrophe A apostrophe is said to be diagonalizable if there exists non - singular matrix apostrophe P apostrophe such that P to the power of negative 1 end exponent A P equals D.

Where D is a diagonal matrix whose diagonal entries are the eigen values of matrix A

And matrix P is formed by taking eigen vectors of matrix A as columns.

(.)  A square matrix apostrophe A apostrophe is diagonalizable if and only if 

          A. M. space equals space G. M. space space space for all space lambda

here lambda is an eigen value.

(.) Algebraic multiplicity ( A.M. ) : The number of times an eigen value occurs is called algebraic multiplicity.

(.) Geometric multiplicity ( G.M.) : G.M. of an eigen value apostrophe lambda apostrophe of an apostrophe n cross times n apostrophematrix apostrophe A apostropheis given by,

      G. M. space o f space apostrophe lambda apostrophe space equals space n minus r a n k open parentheses A minus lambda I close parentheses

here apostrophe I apostrophe  is an apostrophe n cross times n apostrophe identity matrix.

(.)  If A.M. of an eigen value lambda is apostrophe 1 apostrophe then G.M. of  apostrophe lambda apostrophe is also apostrophe 1 apostrophe,

rightwards double arrow space space space space 1 space less or equal than space A. M. space less or equal than space G. M.




steps

Step by step

Solved in 4 steps with 58 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,