Problem 0.6 Given a symmetric matrix A = for A = 69, (3) Diagonalize the matrix QA(x,y) = [x = y] [86] [*] (1) Check by a direct computation that Q₁(x, y) = ax² + 2bxy + cy². (2) Explain what {(x, y) = R² : Q₁(x, y) = 1} represents geometrically, and B = [8] 40 [2], respectively. [31 3 define Can you find an orthogonal matrix V such that VBV-¹ becomes diagonal? (4) Sketch the set {(x, y) = R² : 3x² + 2xy + 3y² = 1}, by relating it with QB, and using the ingredients from (1)-(3).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 0.6:**

Given a symmetric matrix \( A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \), define

\[ Q_A(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. \]

1. Check by a direct computation that \( Q_A(x, y) = ax^2 + 2bxy + cy^2 \).

2. Explain what \( \{(x, y) \in \mathbb{R}^2 : Q_A(x, y) = 1\} \) represents geometrically, for \( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \( \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \), respectively.

3. Diagonalize the matrix

   \[ B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}. \]

   Can you find an orthogonal matrix \( V \) such that \( VBV^{-1} \) becomes diagonal?

4. Sketch the set

   \[ \{(x, y) \in \mathbb{R}^2 : 3x^2 + 2xy + 3y^2 = 1\}, \]

   by relating it with \( Q_B \), and using the ingredients from (1)-(3).
Transcribed Image Text:**Problem 0.6:** Given a symmetric matrix \( A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \), define \[ Q_A(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. \] 1. Check by a direct computation that \( Q_A(x, y) = ax^2 + 2bxy + cy^2 \). 2. Explain what \( \{(x, y) \in \mathbb{R}^2 : Q_A(x, y) = 1\} \) represents geometrically, for \( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \( \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \), respectively. 3. Diagonalize the matrix \[ B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}. \] Can you find an orthogonal matrix \( V \) such that \( VBV^{-1} \) becomes diagonal? 4. Sketch the set \[ \{(x, y) \in \mathbb{R}^2 : 3x^2 + 2xy + 3y^2 = 1\}, \] by relating it with \( Q_B \), and using the ingredients from (1)-(3).
Expert Solution
steps

Step by step

Solved in 8 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,