Problem 0.6 Given a symmetric matrix A = for A = 69, (3) Diagonalize the matrix QA(x,y) = [x = y] [86] [*] (1) Check by a direct computation that Q₁(x, y) = ax² + 2bxy + cy². (2) Explain what {(x, y) = R² : Q₁(x, y) = 1} represents geometrically, and B = [8] 40 [2], respectively. [31 3 define Can you find an orthogonal matrix V such that VBV-¹ becomes diagonal? (4) Sketch the set {(x, y) = R² : 3x² + 2xy + 3y² = 1}, by relating it with QB, and using the ingredients from (1)-(3).
Problem 0.6 Given a symmetric matrix A = for A = 69, (3) Diagonalize the matrix QA(x,y) = [x = y] [86] [*] (1) Check by a direct computation that Q₁(x, y) = ax² + 2bxy + cy². (2) Explain what {(x, y) = R² : Q₁(x, y) = 1} represents geometrically, and B = [8] 40 [2], respectively. [31 3 define Can you find an orthogonal matrix V such that VBV-¹ becomes diagonal? (4) Sketch the set {(x, y) = R² : 3x² + 2xy + 3y² = 1}, by relating it with QB, and using the ingredients from (1)-(3).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem 0.6:**
Given a symmetric matrix \( A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \), define
\[ Q_A(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. \]
1. Check by a direct computation that \( Q_A(x, y) = ax^2 + 2bxy + cy^2 \).
2. Explain what \( \{(x, y) \in \mathbb{R}^2 : Q_A(x, y) = 1\} \) represents geometrically, for \( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \( \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \), respectively.
3. Diagonalize the matrix
\[ B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}. \]
Can you find an orthogonal matrix \( V \) such that \( VBV^{-1} \) becomes diagonal?
4. Sketch the set
\[ \{(x, y) \in \mathbb{R}^2 : 3x^2 + 2xy + 3y^2 = 1\}, \]
by relating it with \( Q_B \), and using the ingredients from (1)-(3).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3ef06bb3-2d9b-4f27-bb3b-835b443ab608%2Fa56b263f-f510-42cd-80a8-a304b0b5c030%2F2xcqzml_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 0.6:**
Given a symmetric matrix \( A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \), define
\[ Q_A(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}. \]
1. Check by a direct computation that \( Q_A(x, y) = ax^2 + 2bxy + cy^2 \).
2. Explain what \( \{(x, y) \in \mathbb{R}^2 : Q_A(x, y) = 1\} \) represents geometrically, for \( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \( \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \), respectively.
3. Diagonalize the matrix
\[ B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}. \]
Can you find an orthogonal matrix \( V \) such that \( VBV^{-1} \) becomes diagonal?
4. Sketch the set
\[ \{(x, y) \in \mathbb{R}^2 : 3x^2 + 2xy + 3y^2 = 1\}, \]
by relating it with \( Q_B \), and using the ingredients from (1)-(3).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 8 steps with 8 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)