Problem 6: A merry-go-round is a playground ride that consists of a large disk mounted to that it can freely rotate in a horizontal plane. The merry-go-round shown is initially at rest, has a radius R =1.2 meters, and a mass M = 251 kg. A small boy of mass m = 42 kg runs tangentially to the merry-go-round at a speed of v = 1.2 m/s, and jumps on. Randomized Variables R = 1.2 meters M = 251 kg m = 42 kg v = 1.2 m/s Part (a) Calculate the moment of inertia of the merry-go-round, in kg m2. Numeric : A numeric value is expected and not an expression. I = (80.7 Part (b) Immediately before the boy jumps on the merry go round, calculate his angular speed (in radians/second) about the central axis of the merry-go-round. Numeric : A numeric value is expected and not an expression. 01 = Part (c) Immediately after the boy jumps on the merry go round, calculate the angular speed in radians/second of the merry-go-round and boy. Numeric : A numeric value is expected and not an expression. O2 = .25 Part (d) The boy then crawls towards the center of the merry-go-round along a radius. What is the angular speed in radians/second of the merry- go-round when the boy is half way between the edge and the center of the merry go round? Numeric : A numeric value is expected and not an expression. O3 = Part (e) The boy then crawls to the center of the merry-go-round. What is the angular speed in radians/second of the merry-go-round when the boy is at the center of the merry go round? Numeric A numeric value is expected and not an expression. 04 = 3347 Part (f) Finally, the boy decides that he has had enough fun. He decides to crawl to the outer edge of the merry-go-round and jump off. Somehow, he manages to jump in such a way that he hits the ground with zero velocity with respect to the ground. What is the angular speed in radians/second of the merry-go-round after the boy jumps off? Numeric : A numeric value is expected and not an expression. O5 =
Problem 6: A merry-go-round is a playground ride that consists of a large disk mounted to that it can freely rotate in a horizontal plane. The merry-go-round shown is initially at rest, has a radius R =1.2 meters, and a mass M = 251 kg. A small boy of mass m = 42 kg runs tangentially to the merry-go-round at a speed of v = 1.2 m/s, and jumps on. Randomized Variables R = 1.2 meters M = 251 kg m = 42 kg v = 1.2 m/s Part (a) Calculate the moment of inertia of the merry-go-round, in kg m2. Numeric : A numeric value is expected and not an expression. I = (80.7 Part (b) Immediately before the boy jumps on the merry go round, calculate his angular speed (in radians/second) about the central axis of the merry-go-round. Numeric : A numeric value is expected and not an expression. 01 = Part (c) Immediately after the boy jumps on the merry go round, calculate the angular speed in radians/second of the merry-go-round and boy. Numeric : A numeric value is expected and not an expression. O2 = .25 Part (d) The boy then crawls towards the center of the merry-go-round along a radius. What is the angular speed in radians/second of the merry- go-round when the boy is half way between the edge and the center of the merry go round? Numeric : A numeric value is expected and not an expression. O3 = Part (e) The boy then crawls to the center of the merry-go-round. What is the angular speed in radians/second of the merry-go-round when the boy is at the center of the merry go round? Numeric A numeric value is expected and not an expression. 04 = 3347 Part (f) Finally, the boy decides that he has had enough fun. He decides to crawl to the outer edge of the merry-go-round and jump off. Somehow, he manages to jump in such a way that he hits the ground with zero velocity with respect to the ground. What is the angular speed in radians/second of the merry-go-round after the boy jumps off? Numeric : A numeric value is expected and not an expression. O5 =
Related questions
Question
Please answer question f
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps