Problem 2. (Runge-Kutta method - J) In this exercise we will study a Runge-Kutta method that is given by k₁ = f(tn, yn) h k2= ftn+ k₁ 3' Yn + 3 ½ 4 ) 1kg = 5 (1₁ + 3 / 1, 3 — — — 1 + kg) k3 | tn h, Yn k4= f (tn+h, yn + k₁ − k₂+ k3) Yn+1 = h : Yn + − (k₁ + 3k2 + 3k3 + k4) 8 a) Present the method in the form of a Butcher tableau. b) Decide the order of the method. c) Implement this method in Python. d) Verify the convergence order numerically. For this you can use the example problem y' = 2ty, y(0) = 1, which has the analytical solution y(t) = et², on the interval [0, 1].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Problem 2. (Runge-Kutta method - J)
In this exercise we will study a Runge-Kutta method that is given by
k₁ = f(tn, yn)
h
k2= ftn+
k₁
3' Yn +
3
½ 4 )
1kg = 5 (1₁ + 3 / 1, 3 — — — 1 + kg)
k3 | tn
h, Yn
k4= f (tn+h, yn + k₁ − k₂+ k3)
Yn+1 =
h
: Yn + − (k₁ + 3k2 + 3k3 + k4)
8
a) Present the method in the form of a Butcher tableau.
b) Decide the order of the method.
c) Implement this method in Python.
d) Verify the convergence order numerically. For this you can use the example problem
y' = 2ty,
y(0) = 1,
which has the analytical solution y(t) = et², on the interval [0, 1].
Transcribed Image Text:Problem 2. (Runge-Kutta method - J) In this exercise we will study a Runge-Kutta method that is given by k₁ = f(tn, yn) h k2= ftn+ k₁ 3' Yn + 3 ½ 4 ) 1kg = 5 (1₁ + 3 / 1, 3 — — — 1 + kg) k3 | tn h, Yn k4= f (tn+h, yn + k₁ − k₂+ k3) Yn+1 = h : Yn + − (k₁ + 3k2 + 3k3 + k4) 8 a) Present the method in the form of a Butcher tableau. b) Decide the order of the method. c) Implement this method in Python. d) Verify the convergence order numerically. For this you can use the example problem y' = 2ty, y(0) = 1, which has the analytical solution y(t) = et², on the interval [0, 1].
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,