Problem 2. Let n E N. Prove the formula using mathematical induction: 1 1.2.3+2.3.4+ + n(n+1)(n+ 2) = = n(n+1)(n+2)(n+3).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Problem 2. Let n ∈ N. Prove the formula using mathematical induction: 1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2) = 1 4 n(n + 1)(n + 2)(n + 3).

Problem 2. Let n E N. Prove the formula using mathematical induction:
1.2.3+2.3.4+...+ n(n+1)(n+2)
=
n(n+1)(n+2)(n+3).
Transcribed Image Text:Problem 2. Let n E N. Prove the formula using mathematical induction: 1.2.3+2.3.4+...+ n(n+1)(n+2) = n(n+1)(n+2)(n+3).
Expert Solution
Step 1

Given : 1·2·3+2·3·4 + · · · · · ·+nn+1n+2=14nn+1n+2n+3    ,  n

To Prove : Given equation by mathematical  induction  

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,