b 2x 1! + 5x 2! + .+ (nt + 1)п! %3D п(п + 1)! + 10 x 3! + .. 2 3 + .. 1 n 1 + + + = 1 - 2! 3! 4! (п + 1)! (п + 1)!

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

b and c

5 Prove by mathematical induction that for all positive integer values of n:
(п + 1)! — 1
b 2 x 1! + 5 × 2! + 10 × 3! + ·.. + (n² + 1)n! = n(n + 1)!
1 x 1! + 2 × 2! + 3 × 3! + · ·. + n × n! = (n + 1)! - 1
1
C
2!
2
3
+
+ :.: +
4!
n
1
= 1
(п + 1)!
...
3!
(n + 1)!
Transcribed Image Text:5 Prove by mathematical induction that for all positive integer values of n: (п + 1)! — 1 b 2 x 1! + 5 × 2! + 10 × 3! + ·.. + (n² + 1)n! = n(n + 1)! 1 x 1! + 2 × 2! + 3 × 3! + · ·. + n × n! = (n + 1)! - 1 1 C 2! 2 3 + + :.: + 4! n 1 = 1 (п + 1)! ... 3! (n + 1)!
Expert Solution
Step 1

(b) Case 1 : n=1

2×1!+5×2!+10×3!+...+(12+1)1! = 1(1+1)!2×1! = 1(2)!2 = 2

Therefore, the result is true for n=1

 

Case 2 : Assume result is true for n=k

Therefore 2×1!+5×2!+10×3!+...+(k2+1)k! = k(k+1)!

Case 3 : Consider n = k+1

Then

LHS = 2×1!+5×2!+10×3!+...+(k2+1)k!+k+12+1(k+1)!= k(k+1)!+k+12+1(k+1)!= (k+1)!(k+k+12+1)= (k+1)!k+k2+2k+1+1= (k+1)!(k2+3k+2)= (k+1)!(k+2)(k+1)= (k+1)(k+2)!= RHS

Hence the result also holds for n = k+1

Hence by principle of mathematical induction, result is true for all natural numbers.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,