b 2x 1! + 5x 2! + .+ (nt + 1)п! %3D п(п + 1)! + 10 x 3! + .. 2 3 + .. 1 n 1 + + + = 1 - 2! 3! 4! (п + 1)! (п + 1)!
b 2x 1! + 5x 2! + .+ (nt + 1)п! %3D п(п + 1)! + 10 x 3! + .. 2 3 + .. 1 n 1 + + + = 1 - 2! 3! 4! (п + 1)! (п + 1)!
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
b and c

Transcribed Image Text:5 Prove by mathematical induction that for all positive integer values of n:
(п + 1)! — 1
b 2 x 1! + 5 × 2! + 10 × 3! + ·.. + (n² + 1)n! = n(n + 1)!
1 x 1! + 2 × 2! + 3 × 3! + · ·. + n × n! = (n + 1)! - 1
1
C
2!
2
3
+
+ :.: +
4!
n
1
= 1
(п + 1)!
...
3!
(n + 1)!
Expert Solution

Step 1
(b) Case 1 :
Therefore, the result is true for
Case 2 : Assume result is true for
Therefore
Case 3 : Consider
Then
Hence the result also holds for
Hence by principle of mathematical induction, result is true for all natural numbers.
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

