Problem 2 (Estimating the Damping Constant). Recall that we can experimentally mea- sure a spring constant using Hooke's law-we measure the force F required to stretch the spring by a certain y from its natural length, and then we solve the equation F = ky for the spring constant k. Presumably we would have to determine the damping coefficient of a dashpot empirically as well, but how would we do so? As a warm-up, suppose we have a underdamped, unforced spring-mass system with mass 0.8 kg, spring constant 18 N/m, and damping coefficient 5 kg/s. We pull the mass 0.3 m from its rest position and let it go while imparting an initial velocity of 0.7 m/s. %3D
Problem 2 (Estimating the Damping Constant). Recall that we can experimentally mea- sure a spring constant using Hooke's law-we measure the force F required to stretch the spring by a certain y from its natural length, and then we solve the equation F = ky for the spring constant k. Presumably we would have to determine the damping coefficient of a dashpot empirically as well, but how would we do so? As a warm-up, suppose we have a underdamped, unforced spring-mass system with mass 0.8 kg, spring constant 18 N/m, and damping coefficient 5 kg/s. We pull the mass 0.3 m from its rest position and let it go while imparting an initial velocity of 0.7 m/s. %3D
Related questions
Question
Expert Solution
Trending now
This is a popular solution!
Step by step
Solved in 9 steps with 10 images