Problem 2 Consider the block of mass m, connected to a spring of spring constant k and placed on a inclined plane of angle a. Let la be the length of the spring at equili brium, and r be the elongation. The block oscillates and at the same time is rotating around origin 0, in the plane of the inclined, by a variable angular velocity d. 1. Calculate the degrees of freedom of the block 2. What is the kinetic energy of the block 3. What is the potential energy of the block 4. Write the Lagrangian function (don't derive the Euler Lagrange equa- tions) reference plane

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Problem 2
Consider the block of mass m, connected to a spring of spring constant k and
placed on a inclined plane of angle
equili brium, and r be the elongation. The block oscillates and at the same
time is rotating around origin 0, in the plane of the inclined, by a variable
angular velocity .
Let l be the length of the spring at
1. Calculate the degrees of freedom of the block
2. What is the kinetic energy of the block
3. What is the potential energy of the block
4. Write the Lagrangian function (don't derive the Euler Lagrange equa-
tions)
reference plane
m
Transcribed Image Text:Problem 2 Consider the block of mass m, connected to a spring of spring constant k and placed on a inclined plane of angle equili brium, and r be the elongation. The block oscillates and at the same time is rotating around origin 0, in the plane of the inclined, by a variable angular velocity . Let l be the length of the spring at 1. Calculate the degrees of freedom of the block 2. What is the kinetic energy of the block 3. What is the potential energy of the block 4. Write the Lagrangian function (don't derive the Euler Lagrange equa- tions) reference plane m
Expert Solution
steps

Step by step

Solved in 5 steps with 2 images

Blurred answer
Knowledge Booster
Basic Terminology in Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY