Problem 2: Black hole – the ultimate blackbody A black hole emits blackbody radiation called Hawking radiation. A black hole with mass M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of hc³/167²KGM. a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole. b) Calculate the total power radiated by a one-solar mass black hole. c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say "evaporates". Derive a differential equation for the mass as a function of time, and solve to obtain an expression for the lifetime of a black hole in terms of its mass.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
Problem 2: Black hole – the ultimate blackbody
A black hole emits blackbody radiation called Hawking radiation. A black hole with mass
M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of
hc³/167²KGM.
a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar
mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole.
b) Calculate the total power radiated by a one-solar mass black hole.
c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing.
As it loses energy, its mass must decrease; one could say "evaporates". Derive a
differential equation for the mass as a function of time, and solve to obtain an
expression for the lifetime of a black hole in terms of its mass.
Transcribed Image Text:Problem 2: Black hole – the ultimate blackbody A black hole emits blackbody radiation called Hawking radiation. A black hole with mass M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of hc³/167²KGM. a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole. b) Calculate the total power radiated by a one-solar mass black hole. c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say "evaporates". Derive a differential equation for the mass as a function of time, and solve to obtain an expression for the lifetime of a black hole in terms of its mass.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON