Problem 1) part (A): 1: Find the 2x- periodic solution u(t, x) to дти = Чихх u (0,x) = 5 cos (3x) - 2 sin (2x) +4 part (B): Find the solution u(t, x) to ди= бихх u(€, 0) = u(t, 10)=0 t> 0, XER XERR u(0,x) = -2 sin ( 3xx ) + b sin (5TX) + 5 sin ( 6xx) 10 : part (C) Find the solution u(t,x) to 764 = 24xx ux (t, 0) = ux (t, 1) = 0 u (o, x ) = -2 + 4 cs (TX) - 765 (12xx) t70, 06x-10 t>o 00, 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Can you show how exactly to solve these using separation of variables and Fourier Series?
Problem 1)
part (A):
1: Find the 2x- periodic solution u(t, x) to
дти = Чихх
u (0,x) = 5 cos (3x) - 2 sin (2x) +4
part (B): Find the solution u(t, x) to
ди= бихх
u(€, 0) = u(t, 10)=0
t> 0, XER
XERR
u(0,x) = -2 sin ( 3xx ) + b sin (5TX) + 5 sin ( 6xx)
10
:
part (C) Find the solution u(t,x) to
764 = 24xx
ux (t, 0) = ux (t, 1) = 0
u (o, x ) = -2 + 4 cs (TX) - 765 (12xx)
t70, 06x-10
t>o
0<x<10
t>0, 0<x<1
t7o
Transcribed Image Text:Problem 1) part (A): 1: Find the 2x- periodic solution u(t, x) to дти = Чихх u (0,x) = 5 cos (3x) - 2 sin (2x) +4 part (B): Find the solution u(t, x) to ди= бихх u(€, 0) = u(t, 10)=0 t> 0, XER XERR u(0,x) = -2 sin ( 3xx ) + b sin (5TX) + 5 sin ( 6xx) 10 : part (C) Find the solution u(t,x) to 764 = 24xx ux (t, 0) = ux (t, 1) = 0 u (o, x ) = -2 + 4 cs (TX) - 765 (12xx) t70, 06x-10 t>o 0<x<10 t>0, 0<x<1 t7o
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,