Problem 1: Harris Corner Detection Complete the python function to implement the Harris corner detection algorithm. The function should take an input image, apply the necessary preprocessing steps, perform corner detection using the Harris algorithm, and display the original image with the detected corners marked. Implement the Harris corner detection algorithm from scratch using Python and NumPy. Load the input image using any suitable library (e.g., OpenCV, PIL). Step 1. Perform the following preprocessing steps on the input image: Step 1.1 Convert the image to grayscale. Step 1.2 Apply Gaussian blur with a suitable kernel size. Step 2. Implement the Harris corner detection algorithm: Step 2.1 Calculate the gradients of the image using Sobel filters. Step 2.2 Compute the structure tensor and the Harris response function. Step 2.3. Apply non-maximum suppression to find the corner points. Step 2.4. Mark the corner points on the original image. def harris_corner_detection(image, kernel_size, k, threshold): # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply Gaussian blur blurred = cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0) # Calculate gradients using Sobel filters gradient_x = cv2.Sobel(blurred, cv2.CV_64F, 1, 0) gradient_y = cv2.Sobel(blurred, cv2.CV_64F, 0, 1) # Compute the structure tensor elements gradient_xx = gradient_xy = gradient_yy = # Apply Gaussian filter to structure tensor elements gradient_xx = misc.gaussian_filter(gradient_x**2, sigma = 1) gradient_xy = misc.gaussian_filter(gradient_y*gradient_x, sigma = 1) gradient_yy = misc.gaussian_filter(gradient_y**2, sigma = 1) # Compute the Harris response function det = gradient_xx * gradient_yy - gradient_xy ** 2 trace = gradient_xx + gradient_xy harris_response = det - k * trace ** 2 # Apply non-maximum suppression to find corner points corner_mask = np.zeros_like(image) ##########--WRITE YOUR CODE HERE--########## # Mark corners in red for row, i in enumerate(harris_response): for col, j in enumerate(i): if j > 0: image[row, col] = [255, 0, 0] ##########-------END OF CODE-------########## # Overlay corner points on the original image output_image = image return output_image
Problem 1: Harris Corner Detection Complete the python function to implement the Harris corner detection algorithm. The function should take an input image, apply the necessary preprocessing steps, perform corner detection using the Harris algorithm, and display the original image with the detected corners marked. Implement the Harris corner detection algorithm from scratch using Python and NumPy. Load the input image using any suitable library (e.g., OpenCV, PIL). Step 1. Perform the following preprocessing steps on the input image: Step 1.1 Convert the image to grayscale. Step 1.2 Apply Gaussian blur with a suitable kernel size. Step 2. Implement the Harris corner detection algorithm: Step 2.1 Calculate the gradients of the image using Sobel filters. Step 2.2 Compute the structure tensor and the Harris response function. Step 2.3. Apply non-maximum suppression to find the corner points. Step 2.4. Mark the corner points on the original image. def harris_corner_detection(image, kernel_size, k, threshold): # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply Gaussian blur blurred = cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0) # Calculate gradients using Sobel filters gradient_x = cv2.Sobel(blurred, cv2.CV_64F, 1, 0) gradient_y = cv2.Sobel(blurred, cv2.CV_64F, 0, 1) # Compute the structure tensor elements gradient_xx = gradient_xy = gradient_yy = # Apply Gaussian filter to structure tensor elements gradient_xx = misc.gaussian_filter(gradient_x**2, sigma = 1) gradient_xy = misc.gaussian_filter(gradient_y*gradient_x, sigma = 1) gradient_yy = misc.gaussian_filter(gradient_y**2, sigma = 1) # Compute the Harris response function det = gradient_xx * gradient_yy - gradient_xy ** 2 trace = gradient_xx + gradient_xy harris_response = det - k * trace ** 2 # Apply non-maximum suppression to find corner points corner_mask = np.zeros_like(image) ##########--WRITE YOUR CODE HERE--########## # Mark corners in red for row, i in enumerate(harris_response): for col, j in enumerate(i): if j > 0: image[row, col] = [255, 0, 0] ##########-------END OF CODE-------########## # Overlay corner points on the original image output_image = image return output_image
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Problem 1: Harris Corner Detection
Complete the python function to implement the Harris corner detection
- Step 1. Perform the following preprocessing steps on the input image:
- Step 1.1 Convert the image to grayscale.
- Step 1.2 Apply Gaussian blur with a suitable kernel size.
- Step 2. Implement the Harris corner detection algorithm:
- Step 2.1 Calculate the gradients of the image using Sobel filters.
- Step 2.2 Compute the structure tensor and the Harris response function.
- Step 2.3. Apply non-maximum suppression to find the corner points.
- Step 2.4. Mark the corner points on the original image.
def harris_corner_detection(image, kernel_size, k, threshold):
# Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur
blurred = cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0)
# Calculate gradients using Sobel filters
gradient_x = cv2.Sobel(blurred, cv2.CV_64F, 1, 0)
gradient_y = cv2.Sobel(blurred, cv2.CV_64F, 0, 1)
# Compute the structure tensor elements
gradient_xx =
gradient_xy =
gradient_yy =
# Apply Gaussian filter to structure tensor elements
gradient_xx = misc.gaussian_filter(gradient_x**2, sigma = 1)
gradient_xy = misc.gaussian_filter(gradient_y*gradient_x, sigma = 1)
gradient_yy = misc.gaussian_filter(gradient_y**2, sigma = 1)
# Compute the Harris response function
det = gradient_xx * gradient_yy - gradient_xy ** 2
trace = gradient_xx + gradient_xy
harris_response = det - k * trace ** 2
# Apply non-maximum suppression to find corner points
corner_mask = np.zeros_like(image)
##########--WRITE YOUR CODE HERE--##########
# Mark corners in red
for row, i in enumerate(harris_response):
for col, j in enumerate(i):
if j > 0:
image[row, col] = [255, 0, 0]
##########-------END OF CODE-------##########
# Overlay corner points on the original image
output_image = image
return output_image
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education