print('==> Bull Kelp and Purple Urchin Population Simulator <==\n') 2 print ( Model Parameters ---') a float(input("Kelp growth rate: \n")) if a<0: 4 5 print("Error: exit() float(input("Kelp death rate: \n")) print("Error: exit() 6 7 b 8 if b<0: 9 10 11 c float 12 if c<0: cannot have a negative growth rate") cannot have a negative death rate") (input("Urchin birth rate: \n")) print("Error: cannot have a negative birth rate") exit() 13 14 15 d float (input("Urchin death rate: \n")) 16 if d<0: print("Error: cannot have a negative death rate") exit() 17 18 19 k0= max(0, float(input())) 20 u0= max(0, float (input())) 21 k = k0 u =u0 22 23 print('\n--- Initial Population ---') 24 print (f"Kelp population (in thousands) at t = 0: ") 25 print (f"Urchin population (in thousands) at t = 0: \n") 26 print (- Simulation ---') 27 28 29 30 31 32 for t in range (2): # 0, 1 print (f"Time t = {t}: {k:.3f}k kelp, {u:.3f}k urchins") k_next = max(0, k + a*k u_next = max(0, u + c*k*u k = k_next u = u_next b*k*u) d*u)
print('==> Bull Kelp and Purple Urchin Population Simulator <==\n') 2 print ( Model Parameters ---') a float(input("Kelp growth rate: \n")) if a<0: 4 5 print("Error: exit() float(input("Kelp death rate: \n")) print("Error: exit() 6 7 b 8 if b<0: 9 10 11 c float 12 if c<0: cannot have a negative growth rate") cannot have a negative death rate") (input("Urchin birth rate: \n")) print("Error: cannot have a negative birth rate") exit() 13 14 15 d float (input("Urchin death rate: \n")) 16 if d<0: print("Error: cannot have a negative death rate") exit() 17 18 19 k0= max(0, float(input())) 20 u0= max(0, float (input())) 21 k = k0 u =u0 22 23 print('\n--- Initial Population ---') 24 print (f"Kelp population (in thousands) at t = 0: ") 25 print (f"Urchin population (in thousands) at t = 0: \n") 26 print (- Simulation ---') 27 28 29 30 31 32 for t in range (2): # 0, 1 print (f"Time t = {t}: {k:.3f}k kelp, {u:.3f}k urchins") k_next = max(0, k + a*k u_next = max(0, u + c*k*u k = k_next u = u_next b*k*u) d*u)
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Need help with checkpoint b while using this code

Transcribed Image Text:1 print('==> Bull Kelp and Purple Urchin Population Simulator <==\n')
2 print('- Model Parameters ---')
4
5
6
9
print("Error:
exit()
b =float (input("Kelp death rate: \n"))
8 if b<0:
10
16
17
18
19
---
a float (input("Kelp growth rate: \n"))
if a<0:
29
30
31
32
11 c =float
12 if c<0:
13
14
print("Error:
exit()
=
(input("Urchin birth rate: \n"))
print("Error: cannot have a negative birth rate")
exit()
d =float (input("Urchin death rate: \n"))
if d<0:
cannot have a negative growth rate")
print("Error: cannot have a negative death rate")
exit()
k0 max(0, float(input()))
20 u0= max(0, float(input()))
21 k =k0
22 u =u0
23 print('\n--- Initial Population ---')
24 print (f"Kelp population (in thousands) at t = 0: ")
25 print (f"Urchin population (in thousands) at t = 0: \n")
26 print('- Simulation ---')
27
28
cannot have a negative death rate")
=
for t in range (2): # 0, 1
print (f"Time t = {t}: {k:.3f}k kelp, {u:.3f}k urchins")
k_next max(0, k + a*k - b*k*u)
u_next = max(0, u + c*k*u d*u)
k k_next
u =
u_next

Transcribed Image Text:Checkpoint B
For Checkpoint B you will extend Checkpoint A to do the following:
1. Prompts the user for an additional parameter: the bound on the timescale $n$ of the simulation
• If a user inputs a negative timescale, the program should immediately print an error message and exit.
2. The program will calculate ki, u for every time in and output these populations at each step
• If the population grows negative, treat it as population that has become zero.
Hint: your program will need a for-loop. Complete this checkpoint after we have introduced for-loops in class.
Sample Output
Sample input/output behavior for the checkpoint are provided below. Your program's spacing, spelling, capitalization, and punctuation will
need to match the sample output EXACTLY for this project.
Ex 1 Sample Input/Output
Given inputs a, 6, 7, 8, ko, ug, nas:
1.5
.001
.05
2.5
100
2
10
The program outputs
==>Bull Kelp and Purple Urchin Population Simulator <==
- Model Parameters
Kelp growth rate:
Kelp death rate:
Urchin birth rate:
Urchin death rate:
Initial Population
Kelp population (in thousands) at t = 0:
Urchin population (in thousands) at t = 0:
--- Simulation
---
Timescale:
Time t = 0: 100.000k kelp, 2.000k urchins
249.800k kelp, 7.000k urchins
Time t = 1:
Time t = 2:
622.751k kelp, 76.930k urchins
Time t = 3: 1508.970k kelp, 2280.018k urchins
Time t = 4: 331.946k kelp, 168603.957k urchins
Time t = 5: 0.000k kelp, 2545463.659k urchins
Time t = 6: 0.000k kelp, 0.000k urchins
Time t = 7:
Time t = 8:
Time t = 9: 0.000k kelp, 0.000k urchins
Time t = 10: 0.000k kelp, 0.000k urchins
0.000k kelp, 0.000k urchins
0.000k kelp, 0.000k urchins
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON

Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education